
A Visual Database System
for Data and Experiment Management

in Model-Based Computer Vision

Linda G. Shapiro, Steven L. Tanimoto, James F. Brinkley,
James P. Ahrens, Rex M. Jakobovits, and Lara M. Lewis
Department of Computer Science and Engineering, FR-35

University of Washington
Seattle, WA 98195

1 Introduction
Computer vision researchers work with many dif-

ferent forms of data. Model-based vision systems
work with geometric models of 3D objects, intensity
or range images, and many different kinds of features
that are extracted from these images. The recogni-
tion/pose estimation process involves a number of dif-
ferent steps and different operations all of which take
in and generate various forms of data. Figure 1 il-
lustrates the operations and data types required for a
sample recognition process (Shapiro, Neal, and Pon-
der; 1992). The process starts with a gray-scale image
and produces an edge image, a line segment structure,
and a triple chain structure (described in Section 2).
Each object in the model database is represented by
a set of its major views, and each major view is rep-
resented by a triple chain structure. The triple chain
structure that was extracted from the image and the
set of triple chain structures representing the major
views (view classes) are input to the matching algo-
rithm which tries to identify the view class or classes
that most closely match the view in the image. This
process illustrates the kind of experiments that mod-
elare simpler than the one shown, and some are much
more complex.

A researcher running a set of experiments with the
process of Figure 1 would want to try the procedure
on a set of test images. A thorough test could involve
hundreds of gray-scale images. Each of these would
produce an edge image, a line segment structure, and
a triple chain structure. The researcher might also
want to try different operators or different versions of
his/her own algorithms. For example, there might be
a set of experiments that used the Canny edge detector
and another set that used the Sobel edge detector. An-
other set of experiments might compare the Burns line
finder to the FEX line finding package. Yet another
set might compare several versions of the matching al-
gorithm. Parameter changes to all of the procedures
would account for even more variability.

The computer vision research community has been
criticized for lack of rigor in scientific experimentation.

It can be argued that this is, at least partly, due to the
lack of facilities for management of experiments and
image-related data. To this end we have designed and
are in the process of implementing a visual scientific
database system, especially intended to handle data
and experiments for model-based computer vision re-
search. The purpose of this paper is to describe this
system to the CAD-model-based vision community.

2 Data Organization
Almost every computer vision system uses a dif-

ferent format for its data. There are several major
image formats and countless data structures used for
mid- and high-level vision. An important question
in our work is how to structure this data to sim-
plify the work of the researcher and promote a degree
of interoperability of software from different groups.
The relational model has been very popular in busi-
ness database systems, but has fallen short in meeting
the needs of scientific researchers. The newer object-
oriented systems are much more flexible, but what
they provide is so general that structuring data is still
a programming art. We have designed a system that
lies somewhere between the two, an entity-oriented,
hierarchical, relational database system. The build-
ing block of the system is the relational data structure
(RDS) of Shapiro and Haralick (1980) which we origi-
nally designed for use in a spatial information system
and which is used heavily in our relational matching
algorithms.

The relational data structure or RDS is a hierar-
chical, relational structure that provides a data model
for scientific research; it was designed in particular, for
research in model-based vision. Each entity in the sys-
tem (images, regions, line segments, sets of extracted
entities, graph structures, and so on) is represented
by an RDS. The RDS structure has five main compo-
nents: the name, the type, the property table, the parts,
and the relations. The name is the unique identifier
of the entity represented by the RDS. Each entity is
of a type that has been predefined to the system via
a schema definition process. The property table is a

64

0-8186-5310-8/94 $03.00 0 1994 IEEE

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

H e w Identification

O a

Figure 1: The experiment structure for an experi-
mental process. The datatypes and operations all
have identifiers that the user can refer to when plan-
ning his/her experiments. In the experiment the first
schema, Gray-ScaleJmage, is to be replaced by four
different instances: CubeScut, Cumbetri, Cubehole,
and Cubecyl. The first operation, edge finder, is to be
replaced by three different operators: the Sobel edge
detector, the Prewitt edge detector, and the Canny
edge detector. The other operations and inputs are
not yet specified.

list of attribute-value pairs describing the global at-
tributes of the entity. For example, an image RDS
might have attributes for the number of rows, num-
ber of columns, bits per pixels, number of bands, and
other information that is often found in image head-
ers.

Many complex entities can be broken down into
parts. For instance, the parts of our line segment
structure are the individual line segments. Similarly
the parts of our triple chain structure are triple chains.
In our sticks, plates, and blobs models (Shapiro e i all
1984), the parts of an object model were sticks (long
thin, parts), plates (flat parts), and blobs (everything
else). The parts component of the RDS allows the
user to easily represent this kind of decomposition.

Relationships among parts are important in many
model-based vision algorithms. The attributed re la
tions of the RDS structure allow these relationships
to be flexibly represented. Any number of relations
can be defined for an RDS schema. Each relation
has a name and two associated integers: the arity of
the relation and the number of attributes attached to
each tuple. For example, when the relation is connec-
tion between two line segments augmented by the an-
gle between connected segments, the arity is two (for
the two connected segments) and the number of at-
tached attributes is one (for the angle between them).
The triple chain structure is a more interesting rela-
tional structure. It has three binary relations over
triple chains: strong adjacency, weak adjacency, and
opposite. Strongly adjacent triple chains share a line
segment, weakly adjacent chains meet a t a point, and
opposite triple chains can be connected by a line in one
of the major directions of the figure that cuts through
its body. Figure 2 illustrates some of the structures
from Figure 1 in the RDS data model.

The structures of Figure 2 are for our own use;
other users of our system may choose to use them or
may define their own schemas to fit their own work.
The rules for designing sehemas are simple. The prop-
erty list acts as a general attribute-value or slot-filler
storage device. Users who do not wish to explicitly
identify parts and relations will store all information
about an entity in its property table. The simpler en-
tities, in fact, consist only of a property table. The
Line-Segment RDS of Figure 2 is an example of such
an entity.

Whenever the user wishes to associate a named list
of RDSs with the RDS schema he/she is designing, the
parts section of the RDS is the most appropriate devise
to use. Many of our sample structures have parts; the
parts of the LineSegmentStructure are LineSegment
RDSs, the parts of the Triple-ChainStructure are
Triple-Chain RDSs, the parts of a TripIe-Chain
are Triple RDSs, and the parts of a Triple are
LineSegment RDSs and Triple-Chain RDSs. In the
last case, there are two separate kinds of parts iden-
tified by two separate identifiers, Tlines and Tchains.
Note that the semantics of “parts” is left to the user;

65

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

Schema Line-Segment-Structure

Number-of-Rows

Number-of-Cols

History

Image-Head=

Image-Data

Schema Gray-Scale-Image

int

int

History

Header

m y

Schema Labeled-Image

Segment-Type

Attributes

-1

char

Attributes

Image-From:

Attributes -1

Labeled-Image

list of
TChains

list of
Triple-Chain

I Numix-of-Rows lint I Pans
listof
Line S e w " Segments

Relations
I Prnximitv (svmmeuic) I

Parallel (symmetric)
I seg 1

Lie-Seament I Line-Segment (float
History Histmy

Schema Line-Segment Schema Triple-Chain-Structure

I Attributes

Schema Junction

Attributes
I I

I I
I 1 I

I
Juncuon

Schema Triule Schema Triple-Chain
Attributes

Closed-Chain boolean TChains list of Triple-Chain

I

TChain list of Triplcs

Figure 2: Model-based Vision Structures in the RDS Data Model

66

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

parts may be subparts, superparts, or just associated
entities.

Once the user has defined one or more sets of parts
in a schema, he/she may define attributed relations
over those parts. The LineSegmentStructure, for ex-
ample, has relations named Proximity, Parallel, and
Collinear. Each of these is an attributed binary re-
lation; each tuple contains two parts in the indicated
relationship plus an attribute of this relationship. For
instance, the Proximity relation has a Distance at-
tribute indicating the distance between the two proxi-
mate line segments, sego and segl. Since the user has
indicated that this relation is symmetric, the order of
the parts conveys no meaning. If (Linea, Lineb, dis)
is a tuple in the Proximity relation, then so is (Lineb,
Linea, dis), whether it is explicitly stored or not.

3 User Interface
All aspects of interaction between the user and the

database system involve graphical information. The
system consists of several subsystems or graphical

different aspects of the database. The main window of
the system can be thought of as a toolbox which pro-
vides the user access to these tools via a menu. The
list of tools includes: Schema Constructor, Schema
Browser, Database Manager, Instance Browser/Query
Environment, and Lab Notebook. Each graphical tool
will produce its own window with its own particular
visual interface.

tools) with which the user can access an 6 manipulate

3.1 RDS Schema Creation/Modification
The system will contain a set of built-in RDSs,

but the user is not restricted to using these alone.
Through the RDS Schema Constructor, the user can
create and modify new schemas for his/her own new
RDS types. The RDS creation process allows the user
to add, modify, and delete properties, parts, and re la
tionships within the new RDS. New RDSs can inherit
properties, parts, and relationships from other RDSs.
The constructor has three separate selection windows
for the properties, parts and relations. However, a t
any time during the creation or modification of an
RDS, the user can bring up a view window for viewing
the definition of the schema in a more coherent man-
ner. Once the user is finished defining a new RDS,
hefshe can add it into the database where it can be
shared by all users. In order to avoid having the user
type in large amounts of information, the interface is
highly graphical. The names of new (i.e. not inher-
ited) properties, parts, and relationships are typed in
by the user, but most everything else can be specified
through a selection process. Figure 3 illustrated the
process of defining the Linesegment-Structure RDS.

3.2 RDS Instance Creation/Modification
In most cases, the creation of RDS instances will

be done automatically as a side effect of running an
experiment. RDS instances can also, however, be cre-
ated by entering values for the properties, parts, and

relationships into an empty template of the RDS. As
before, the amount of typing the user must do is kept
to a minimum. Textual information, such as names,
comments and atomic values must be typed directly
into the template. Entering instances of other RDSs
will be done through a special selection interface be-
tween the Query Environment and the Database Man-
ager.

3.3 Instance Browsing
Visualization of data is extremely important to

users of any scientific database system, especially a
system for computer vision research. We will pro-
vide a rich set of graphical primitives and a method
for combining them so that users may specify visual-
izations for entities whose schema they design. Our
initial system will provide graphical primitives for dis-
playing graytone and labeled images, regions, line seg-
ments, and points. Users defining a new schema will
specify the graphical representation for each part of
the schema that is to be displayed. An RDS will be
displayed by displaying its properties, its parts, and
its relations. This subsystem is currently being de-
signed. When it is finished, users will be able to select
a schema and browse through collections of instances
of that schema that are returned by the query proces
sor .

3.4 Schema Browsing
We expect our system to be used in shared labora-

tory environments. Users will design their own struc-
tures, but will often share those structures with oth-
ers. Furthermore, users will sometimes wish to access
particular structures, but will often want to browse
through their own structures, structures designed by
other users, and structures provided by the system.
Schema browsing means looking through a number of
different schema. In our system, this means selecting
the schema from a menu of choices and viewing that
schema in a window provided by the schema browser.
There are two different ways of viewing a schema. One
is to view the textual structure that the designer of the
schema produced when creating the schema. However,
a user who is unfamiliar with a particular schema or
its fields, may want to see an example. We will pro-
vide the facility for the user to ask for an example for
any schema he/she is viewing. Each schema will have
an attached sample RDS instance for this purpose,
so viewing an example will merely cause the schema
browser to call on the instance browser to produce the
appropriate graphics. We will provide sample struc-
tures for all the built-in RDS schemas in our system
and will encourage our users to do the same for their
own structures.

3.5 Query Interface
In our system, we do not differentiate between

querying and browsing. Unrestricted browsing
through a set of entities is just a method of exam-
ining each entity in the set. As the user starts spec-
ifying constraints, the subset of entities that he/she
actually examines becomes more restricted and thus

67

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

I

br a 'I
! I

Figure 3: In this example, the schema for the
LineSegmentStructure is being defined. The property Number-ofsegments has been defined to be of type
integer; the parts list named Segments has been defined to be a list of LineSegments: and the relations Collinear-
i t y and Proximity over pairs of Linesegments have been defined. The user is in the process (riglit side of figure)
of defining the attributed binary relation Parallel, also over pairs of LineSegments and has just typed in the
attribute name Degree to be a real attribute of that relation.

The graphical interface for RDS schema construction.

68

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

smaller. The user interface for querying or browsing
displays a textual version of the schema for the RDS
instances to be returned. The user will interact with
the graphical interface to enter constraints concerning
the various sections of the RDS. This will be discussed
in the next section.

4 RDS Queries
The standard selection query in a relational or

object-oriented database system asks the system to
retrieve a set of entities of a given type that satisfy
certain constraints. There are two major categories
of constraints that users might wish to impose. The
first involves constraints on the data. For example, a
user may wish to retrieve all Linesegments of length
greater than 50 pixels from a LineSegmentStructure
associated with a specific instance of a LabeledJmage.
All of the constraints in this query involve specific
fields of specific RDS schemas. The second involves
constraints on the experiments that the data came
from or is to be used in. For instance, a Ph.D. stu-
dent may wish to obtain a set of images that another
(usually former) student used in his/her research. Or
a researcher may want to retrieve some data that she
herself used about three years ago. We expect our
users to retrieve data in both ways and sometimes in
a combination of both ways. In this section, we will
consider only data-driven queries; experiment-driven
queries will be discussed under experiment manage-
ment.

A query is the specification of 1) an RDS schema
and 2) a set of constraints involving that schema.
The result of a query is a set of RDS instances of
that schema that each .satisfy the stated constraints.
Since our RDSs have three sections (properties, parts,
and relations), a query concerning a particular RDS
schema must be able to specify constraints concerning
its properties parts and relations. We will define each
of these in turn.

4.1 Property Table Constraints
A local constraint is a Boolean expression defined

over (the value of) a single attribute. For example,
if Nrows is an attribute in the property table of an
image, then (Nrows 5 512) is a local constraint. A
global constraint is a Boolean expression defined over
the (values of) more than one attribute. For exam-
ple, if Nrows and Ncols are two separate attributes
in the property table of an image, then (Nrows 2
512 or Ncols 2 512) is a global constraint. An RDS
instance satisfies the property table constraints of a
query if it satisfies every local constraint and every
global constraint specified by the user in that query.

We will call the combined constraints on an RDS in
a query an RDS constraint expression. The simplest
RDS schemas consist only of a property table. The
RDS constraint expression for these simple schemas
is merely the and of all the local and global property
table constraints. This is the basis for the recursive

definition of an RDS constraint expression.

4.2 Parts Constraints
The user specifies the parts of a schema as a collec-

tion of named sets of RDSs. A query concerning the
parts is (recursively a query concerning the RDSs in
these sets. A parts 1 ist constraint is a quantified RDS
constraint expression. The quantifier is currently re-
stricted to being very simple: a single universal quan-
tifier, a single existential quantifier, or a percentage
quantifier. A list of parts satisfies a universally quan-
tified parts list constraint if all the RDSs in the list
satisfy the constraint. A list of parts satisfies an exis-
tentially quantified parts list constraint if a t least one
of the RDSs in the list satisfies the constraint,. A list
of arts satisfies a nn-percentage quantifier if at least
n n k of the RDSs in the list satisfy the constraint. A
local parts list constraint is a constraint on a single
named set of parts in an RDS. A global parts list con-
straint is associated with all parts of the RDS, not just
a particular named set of parts. An RDS instance sat-
isfies the parts constraints of a query if it satisfies all
of the local parts list constraints and all of the global
parts list constraints of the query.

4.3 Relational Constraints
The kinds of queries described so far involve only

predefined atomic values. The most interesting kind
of retrieval in model-based vision is the retrieval of
images or models according to their content. Query
b y content is a phrase that is often cited by image^
database researchers, but it is not well-defined. Ev-
ery system has its own meaning of the term. In our
model-based vision systems, we use relational match-
ing as the paradigm for matching an object model to a
(relational) structure extracted from an image. Thus
it is natural in our database system to use relational
matching as one form of query by content. The pur-
pose of this kind of query is to retrieve entities that
are similar to or contain subentities that are simi-

do not intend our relational query mechanism to take
the place of the user’s own object matching strategies.
Furthermore, we intend to also provide other forms of
query by content such as direct (sub)image to image
matching .

lar to) specifie d relational structures. Note that we

Relational matching is the process of comparing
two relational structures to determine how similar
they are. For instance, the two Triple-Chain Struc-
tures in Figures 4a and 4b are very similar. The
structure in Figure 4c is identical to a substructure
of Figure 4a. We have defined a metric called the re-
lational distance that can be used to compare two re-
lational descriptions (Shapiro and Haralick, 1985) and
indicated how to extend it to attributed relational de-
scriptions in our book (Harahck and Shapiro, 1992).

The attributed relational distance allows the re-
trieval of structures having relations that are similar to
specified relations. Another useful facility in a vision

69

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

a) Triple-Chain b) A similar
Structure structure

- strong adjacency j>>. - weakadjacency
C ++ opposite

c) A substructure

Figure 4: Three Triple-ChainStructures. Structures a and b are similar to one another. Structure c is isomorphic
to a substructure of structure a.

database system is to allow retrieval of structures hav-
ing relations that, contain subrelations that are similar
to specified relations. We will refer to this as a “one-
way relational distance.” Here the query specifies a
“small” relation and looks for entities whose (larger)
relations contain or nearly contain the small one. This
is what model-based vision is all about.

Given the capability to determine the normalized,
attributed relational distance (or one-way relational
distance) between any pair of relations that have the
same arity and the same number (and type) of at-
tributes, users of our system may formulate queries
that search for RDSs with relations that are similar
to (or contain subrelations that are similar to) user-
specified relations. To this end, a relational constraint
is the specification for a particular named relation R in
the query of a triple (S, 6, f o r m) , where S is a second
relation of the same arity and having the same number
and types of attributes as R, E is a matching thresh-
old between 0 and 1, and f o r m indicates if the full
relational distance or one-way relational distance is to
be used. An RDS satisfies this relational constraint
if the (appropriate) relational distance between S and
the corresponding relation of the RDS is not greater
than E . An RDS satisfies the relational constraints of a
query if it satisfies each specified relational constraint,
individually.

4.4 Full RDS Constraints
We have now defined property table constraints,

parts constraint,s, and relational constraints that can
be formulated for a query. Putting these together, an
RDS constraint consists of the specification of an RDS
schema along with its property table constraints, its
parts constraints, and its relational constraints. An

RDS instance satisfies an RDS constraint if it is of
the type specified by the schema and it individually
satisfies the property table constraints, the parts con-
straints, and the relational constraints.

5 Experiment Management
Computer vision researchers, like scientific re-

searchers in general, need to manage sets of con-
trolled experiments. In the past, it has been very diffi-
cult to record and organize experiments and the large
amounts of data they produce and consume. Our sys-
tem provides the concept of an interactive laboratory
notebook, which is a collection of tools and structures
that aid the user in managing, recording and organiz-
ing experiments on data stored in the database. The
laboratory notebook also records history information
about data stored in the database. This history data
is accessible by the user and provides extra knowledge
useful for understanding and creating related data.

All structures used in the laboratory notebook are
RDSs. This is possible because of the flexibility of the
RDS structure. Using RDSs in the laboratory note-
book unifies our system; the same tool interfaces can
be used to create and access both data structures and
laboratory notebook structures.

5.1 Overview of Experiments
An experiment is the controlled execution of a

process that produces and consumes data from the
database. The user controls the execution of the pro-
cess by specifying operations, parameters and data to
substitute into the process. Substituting new elements
permits the user to explore the effect of simple changes
to the process. For example, a vision researcher might
be interested in testing the quality of a set of edge de-

70

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

tection operators. An experiment is designed which
specifies a process with an edge detection operator
and the new set of edge detection operators to test.
When the experiment is executed, each operator in
the set is substituted for the edge detection operator in
the process. This generates a modified process, which
is executed and outputs are generated. The outputs
are stored in the database for later analysis. The lab
notebook controls execution of experiments and keeps
track of results.

5.2 Process Definition
A process definition amenable to substitutions is an

important component of our definition of an experi-
ment. In our system, a process consists of functional
operators with directed connections that specify the
schemas of the RDSs that flow along them. Model-
ing a process as operators and typed connections is
derived from the object-process model of Dori et al.
(1993). The benefit of these models is the explicit rep-
resentation of both the RDS schemas of the instances
that flows thorough a process and the operations that
compose a process.

Our process definition defines the structure of the
process. For each operator, the number of parame-
ters and RDS schema of each parameter are specified.
A process defined to this level of detail is a process
schema. The process diagram of Figure 1 is an exam-
ple of a process schema. When a process schema is
further defined with one or more RDS instances spec-
ified for each input connection it is a process instance.
Process instances are executable.

5.3 Experiment Structure Definition
An experiment RDS contains the name of the ex-

periment, time of creation, an experimental process
RDS and a process data RDS. An experimental pro-
cess RDS contains a process instance and a set of sub-
stitution locations. A substitution location is a label
of an operator or connection in the process instance,
which denotes where a substitution occurs. A pro-
cess data RDS contains a collection of substitution
sets and storage for outputs. The experiment, exper-
imental process, and process data RDSs also contain
storage for textual descriptions and comments by the
user about the experiment, process and the process
data.

5.4 Experiment Tools
The lab notebook provides a collection of tools

which support the management of experiments. Ex-
periment management tools make use of the manage-
ment, query and browser tools provided in our system.
The suite of tools associated with the management of
experiments includes tools for experiment modifica-
tion, execution, analysis, organization and browsing.
There are menu options to activate these tools at the
top-level interface of the notebook.

5.5 Interfacing with other packages
While the database system will be autonomous, our

design provides for its access from one or more image
processing packages. Our first prototype system will
be interfaced to KHOROS, a public domain software
system from the University of New Mexico (Rasure,
1991). KHOROS commands will be created that call
on the query processor of the database system to re-
trieve data for KHOROS experiments and that store
experimental results in the database.

5.6 Organizing Experiments
Many researchers have used an ad-hoc system of

recording and organizing data which consists of stor-
ing data in files and using long file names and direct+
ries as indices. Sometimes it is difficult to find stored
data in these system because the organization scheme
for the file names is ad-hoc and there are many files
to search by hand. The laboratory notebook provides
an alternative to this scheme using the organization
RDS structure. The organiraiaon RDS is a hierarchi-
cal index of information used to organize experiments.
The hierarchical structure is used to store information
about the environment in which experimentation takes
place, as well as any hierarchical organization struc-
ture imposed by users,

5.7 Browsing for experiments - Time line
tool

The lab notebook provides a variety of different
tools to browse through experiments. Using the RDS
browser to browse organization structures lets re-
searchers browse for experiments based on their or-
ganization information. The time line Browser Tool
allows a researcher to visually browse for experiments
according to the time of their creation. A line is dis-
played and annotated with a collection of possible ex-
periment creation dates. The dates represent the en-
tire range of possible date values and only a subset are
actually displayed, for example, one from each year.
To access a sub-range of the dates the user points the
mouse and clicks anywhere on the displayed time line.
The line is re-annotated with dates with a sub-range
of dates centered on the date selected by the user.
Each sub-range of dates narrows the range of dates
displayed, for example, the months in a selected year
and then the days in a selected month. Once the total
number of experiments names in the sub-range is a
manageable size the experiment names are displayed
and the user may select an experiment.

5.8 The history mechanism
Another problem encountered by computer vision

researchers is a lack of knowledge about the process
used to create some particular data set. This knowl-
edge or history increases the user understanding of the
data. The laboratory notebook uses a history mechai
nism to record the operators and input data used to
create each RDS.

71

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

The history mechanism works by associating a his-
tory node with each instance in the database. A his-
tory node stores references to the operator the in-
stance was generated from and the history nodes for all
input instances of that operator. The most recent h i s
tory information is contained within the history node
itself, the operator used to generate the instance. The
operator’s input data history nodes contain the oper-
ators used to generate the input instances. History
nodes form a tree-structured chain of history informa-
tion.

6 Related Work
Our work spans several different, but related areas

of research: computer vision/image processing, scien-
tific database systems, visual languages, and experi-
ment management systems. Other database systems
being developed for computer vision/image process-
ing include the work of Brolio et al. (1989) and of
Gupta et a1 (1991). The computer vision community
is also in the process of defining the image understand-
ing environment (Mundy et al., 1992) which contains
the structure and access definitions for a wide variety
of structures commonly used in computer vppision. It
will be straightforward to implement these structures
as RDSs in our database system.

7 Summary
We have presented the design of a visual database

system for data and experiment management. Our
system was designed as a general scientific database
system, but motivated by and intended for use in
model-based computer vision. We provide a unified
data model, a highly graphical user interface, an ad-
vanced query facility, and an interactive laboratory
notebook. We hope that the system, when completed,
will aid in scientific experimentation and will promote
data sharing in the computer vision research commu-
nity.

8
1.

2.

3.

4.

References
Brolio, J . , B. A. Draper, J . R. Beveridge, and A.
R. Hanson, “ISR: A Database for Symbolic Pro-
cessing in Computer Vision,” IEEE Computer,
V01.22, Dec. 1989, pp. 22-30.

Dori, D., I. Phillips, and R. M. Haralick, “In-
corporating Documentation and Inspection into
Computer-Aided Manufacturing: An Object-
Process Approach,’’ Applications of Object-
Oriented technology in Manufacturing, Chapman-
Hall, London, 1993.

Gupta, A., T . Weymouth, and R. Jain, “Se-
mantic Queries in Image Databases,” Proceedings
of the IFIP 2nd Working Conference on Visual
Database Systems, 1991.

Haralick, R. M. and L. G. Shapiro, Computer and
Robot Vision: Vol. II, Reading: Addison-Wesley,
1992.

5.

6.

7.

8.

9.

10.

Mundy, J., T. Binford, T.Boult, A. Hanson, R.
Beveridge, R. Haralick, V. Ramesh, C. Kohl, D.
Lawton, D. Morgan, K. Price, T . Strat, “The Im-
age Understanding Environment Program,” Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1992, pp. 406-
415.

Rasure, J . R. and C. S. Williams, “An Integrated
Data Flow Visual Language and Software Devel-
opment Environment”, Journal of Visual Lan-
guages and Computing, Vol 2, 1991, pp. 217-246.

Shapiro, L. G. and R. M. Haralick, “A Spatial
Data Structure,” Geo- Processing 1, 1980, pp.
3 13-337.

Shapiro, L. G., J . D. Moriarty, R. M.
Haralick, and P. G. Mulgaonkar, “Matching
Three-Dimensional Objects Using a Relational
Paradigm,” Pattern Recognition, Vol. 17, No. 4,

Shapiro, L. G. and R. M. Haralick, “A Metric
for Comparing Relational Descriptions,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-7, No. 1, 1985, pp. 90-
94.

Shapiro, L. G., P. J. Neal, and K . Ponder, “Re-
lational Models for View Class construction in
3D Object Recognition,” Proceedings of the I A P R
Workshop on Structural and Syntactic Pattern
Recognition, August 1992.

1984, pp. 385-405.

72

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore. Restrictions apply.

