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Abstract
When creating transfer functions for time-varying data, it is not clear what range of values to use for classi�cation,
as data value ranges and distributions change over time. In order to generate time-varying transfer functions, we
search the data for classes that have similar behavior over time, assumingthat data points that behave similarly
belong to the same feature. We utilize a method we call temporal clustering andsequencing to �nd dynamic
features in value space and create a corresponding transfer function. First, clustering �nds groups of data points
that have the same value space activity over time. Then, sequencing derives a progression of clusters over time,
creating chains that follow value distribution changes. Finally, the cluster sequences are used to create transfer
functions, as sequences describe the value range distributions over time ina data set.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.7]: Applications—

1. Introduction

For time-varying data, it can be unclear how to create a trans-
fer function [Lev88] for classi�cation [Ma03]. Most transfer
function implementations have the user generate the map-
ping. This assumes that the user knows a priori the dynamic
value ranges. With lack of foreknowledge, a user generated
classi�cation may not accurately visualize his or her time-
varying data, except through trial and error. It is possible
that a conservative static classi�cation map will fail to visu-
alize anything after time progresses and values move out of
the mapped range. Conversely, if the mapped value ranges
are wide, the visualization may become too cluttered. Also,
there is tedium in creating transfer functions for every single
time step to get around the aforementioned problems.

In Figure 1 in the upper left image, we have data visu-
alized with a static transfer function. If we use the same
transfer function for a time later in the series, we get the
image that is in the upper right. It appears that the visual-
ized feature is dissipating over time. In the lower two im-
ages, we use transfer functions created through analysis of
the time-varying data, applied to the same two time steps.
This transfer function is optimized to map the value ranges
that correspond to similar temporal activity in the data. The
feature doesn't dissipate, rather we detect that the values cor-

responding to the visualized feature shift in downward in
value space and we alter the map to visualize the new range.

In order to support the traditional visualization pipeline,
we seek to semi-automatically generate transfer functions
for time-varying data. The reason for this is to solve the pre-
viously stated problems of manual time-series transfer func-
tion creation. Our premise to generate transfer functions is
that we can analyze the time-varying data to �nd points that
share similar value activity. We use this information to nar-
row the transfer function map into these ranges of interest
over time. Our hypothesis is that data points that behave sim-
ilarly at a window in time belong to the same feature, and
thus are the same class of data. This derived information can
be used to create a time-series transfer function. Included
in the supplemental electronic material are videos showing
time-series animations using transfer functions generated by
our method.

In the following, we outline the paper organization. Sec-
tion 2 describes the related work in transfer functions and
time-varying visualization. Section3 explains our method-
ology of �nding sequences, used for classi�cation of time-
varying data. Section4 describes how sequences are used to
generate of transfer functions for visualization. We conclude
with Section5.
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Figure 1: A combustion data set of two time steps, left to
right, with different transfer functions applied to it. The top
images use a single static transfer function, and the feature
appears to vanish over time. The bottom images use a dy-
namic transfer function created through time-series analy-
sis.

2. Related Work

Levoy �rst described the use of transfer functions for vi-
sualization of volume data [Lev88]. The following authors
use methods of analysis to construct transfer functions. He
et al. described a method for genetic selection of trans-
fer functions to �nd an optimal rendering from user input
[HHKP96]. Bajaj et al. allow the user to search the data pa-
rameter space for isosurface values, which in turn can be
used to generate transfer functions [BPS]. Kindlmann and
Durkin used histogram volumes to �nd boundaries between
materials [KD98]. Kniss et al. provided methods to allow the
user to manipulate transfer functions in higher dimensional
data space in order to locate surfaces and features [KKH01].
Petersch et al. performed real time opacity adjustment for
visualization of ultrasound imagery by searching for inter-
faces, taking point-of-view into consideration [PHHH05].

The generation of transfer functions for time-varying data
has been attempted with various different methods [Ma03].
Jankun-Kelly and Ma generate static transfer functions for
time-varying data by merging several transfer functions over
time [JKM01]. Tzeng et al. and Akiba et al. generate dy-
namic transfer functions using the global histogram as it
evolves over time. Tzeng [TM05] uses neural network tech-
niques to adapt the transfer function over time from trained
transfer function keyframes. Akiba [AFM06] uses time his-

togram [KBH04, DMG� 04] quantization to create equiva-
lence classes over time to track value populations.

Data value activity has been used in the classi�cation of
time-varying data. van Wijk clustered time-series activity to
�nd similar temporal patterns [vWvS99]. Fang et al. used
time activity to segment medical data, assuming that data
points that behave similarly over time are part of the same
tissue [FMHC07]. Woodring and Shen [WS09] use wavelets
to �lter time-varying data into several time scales and clas-
si�es data by clustering the entire time series by time scale.
Lee and Shen [LS09] visualize time-varying data using the
dynamic time warping distance to estimate when an activity
signature exists. Wang et al. [WYM] use multi-dimensional
histograms to cluster time-varying data based on similar in-
formation entropy. Temporal value activity relates our work
in that it is the foundational basis for how we �nd groups or
features of similarly behaving data points. Similar to these
past works, we treat features or classes in our data as groups
of points that behave similarly in value over time.

Feature tracking is used in time-varying visualization as
well. Silver and Wang have used temporal volume overlap
to track volume objects over time [SW97]. Ji and Shen treat
3D time-varying data as a 4D dimensional �eld, and per-
form high-dimensional isosurfacing and slicing to track iso-
surfaces over time [JSW]. Reinders et al. use methods of fea-
ture extraction and path prediction to track classi�ed features
over time [RPS01, PVHL03]. The work in feature tracking
is signi�cant in our work as the concepts continuation, cre-
ation, termination, merging, and splitting, and the sequence
of events in�uenced our work in graph and sequence genera-
tion. The features that we extract are “events” on a time line
per time step, and we sequence them together into a contin-
ual chain of events. The sequences in turn are used to create
a time-series transfer functions.

3. Temporal Clustering and Sequencing

Figure 2: The process of temporal sequencing to create a
transfer function.

Our method of generating time-series transfer functions
utilizes a semi-automatic process that we calltemporal clus-
tering and sequencing. The method attempts to generate
a classi�cation for a time series data set by identifying
groups of points that change in value similarly [FMHC07,
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vWvS99,WS09] and creating sequences of groups over time
[RPS01, PVHL03]. In Figure 2, we show a diagram of the
process. Below, we show an outline of the process, and the
user interaction required per step.

1. Process:Generate activity clusters per time step
Input: time-series data set
User Parameter:k, w
Output: k clusters of points per time step
The user inputs their time-series data into a clustering al-
gorithm. The clustering will �ndk activity clusters (fea-
tures) per time step, wherek is a user input.k is roughly
equivalent to the number of transfer functions or clas-
si�cations that will be generated.w, also a user input,
governs the time window (vector length) for clustering.
The output is clusters of data points (features) that be-
have similarly in value space over a time windoww at a
particular point in time.

2. Process:Generate sequences from clusters
Input: k clusters of points per time step
User Parameter:g
Output: cluster graph and n sequences of clusters
The sequencing process takes the clusters (features) gen-
erated by step 1 and creates a graph of clusters. Clusters
are nodes in the graph connected by edges to the clusters
in the previous and next time steps. Edges are a probabil-
ity estimate that one feature (cluster) is the same feature
in the next time step, but with a slight change or evolu-
tion. g is a user input which culls low probability edges
from the graph. A �nd-all-paths algorithm extractsn se-
quences from the culled graph, such that one sequence
represents a feature evolving over time.

3. Process:Visualize the process
Input: cluster graph and n sequences of clusters
User Parameter:selection of a sequence of clusters
Output: sequence of clusters
The graph and sequences generated in step 2 are shown
to the user in a visualization interface. The graph shows
information about the clusters after edge culling by pa-
rameterg. Then resulting sequences are also shown with
the information about the sequences. A user browses the
data from this interface and picks a sequence to be used
for generating a transfer function.

4. Process:Generate a transfer function
Input: sequence of clusters
User Parameter: transfer function type, optional initial
color/opacity map
Output: time-series transfer function
The sequence the user picks in step 3 is used as input to
the transfer function generation. A sequence describes a
class of data that evolves over time. The information con-
tained in a sequence is used to generate a time-varying
transfer function of the user's choice. The user can op-
tionally input an initial color/opacity map to visualize a
feature that is automatically updated over time to create a
temporally coherent transfer function.

3.1. Windowed Time Activity Curve Clustering

To �nd features per time step, data points are grouped to-
gether if they exhibit the same value activity in a local tem-
poral neighborhood. We assume that points that have the
same value and change in value over time belong to the
same phenomenon or feature. A common way to repre-
sent the change over time is thetime activity curve(TAC)
[FMHC07]. It is a vector representation of a data point that
hast elements ordered by time, representing the values of a
data point over time. TACs can also be thought of graphi-
cally as a plot of time vs. value for a data point, as in Figure
3.

To group or cluster data points by similar activity, we use
parallelizedk-means [HW79] clustering on the input time-
varying data set that has been transformed to TAC vector
representation. The clusters of TAC vectors describe data
points that have similar value activity over time. We perform
clustering for each time step, creatingk classes that behave
similarly for that time step. We record the histograms of the
TAC data in the time window and the spatial extent of each
cluster, which is used later in the sequencing and transfer
function generation.

Figure 3: Four graphed time activity curves (TAC) for four
data points. The 1st, 3rd, and 4th data points have similar
temporal activity in a time window, and would be in one
cluster for that time window.

Instead of classifying data points by their entire time se-
quence, we cluster per time step and window the TAC vec-
tors, like in Figure3. A window kernel of lengthw is used,
when clustering a time stept. Therefore, we only clus-
ter the points that have similar activity in a local tempo-
ral window w. In previous work, temporal activity classes
are de�ned using the entire time sequence for TAC vec-
tors [FMHC07,vWvS99,WS09], which is adequate for spa-
tially static features. This is a problem for data that have fea-
tures that move in space. If we use the entire time sequence
to cluster data points, a point in space can only belong to
one classi�ed feature, thus features become spatially static.
By windowing, a point in space can then belong to multiple
features (clusters) over time, as a feature moves in space. For
the window kernel in our implementation, we used the box
kernel, as there is an unnoticeable difference between a box
and a Gaussian kernel.

To follow the evolution of clusters over time in the next
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section, we need to have clusters that are relatively similar
over time, or temporally continuous. If clusters vary signi�-
cantly over time, the sequencing process will not be able to
match clusters very well. Additionally, the generated transfer
functions will be visually discontinuous, because value dis-
tributions vary wildly over a sequence. In in our work, hav-
ing k that is too high leads to over-�tting and it may lead to
temporally discontinuous clusters. Choosing the rightk has
perpetually been a problem, and there are no known good so-
lutions to �nding k. Ultimately, we left it as a user decision,
ask is roughly proportional to the number of independent
transfer functions (features) that are extracted by the pro-
cess. The �nal number of possible transfer functions how-
ever is greater than or equal tok, depending on how many
sequences merge or split in the sequencing process. In our
tests, we pickedk ranging from 2 to 4.

The windoww can have an impact of the temporal con-
tinuity of clusters if the value activity ranges are very close
together, overlap, or if there is over-�tting. To helpk-means
to disambiguate classes, the length of the kernel is increased,
thereby increasing the feature vector. A length of 5 (neigh-
borhood of 2 time steps) was adequate in most cases to sep-
arate data for the data sets we used. For one particular case,
the argon bubble data in Figure5, we extended the length of
the kernel to 7, due to overlapping values in activity, to result
in temporally continuous clusters. The optimal length of aw
and size ofk is ultimately data dependent, and further study
would be needed to algorithmically determinew andk. Po-
tentially, we can add more information to the feature vector
(TAC) to allowk to increase, and shortenw.

3.2. Cluster Sequencing

The second step in our process is the creation of sequences
from the clusters found per time step. We do this to follow
the evolution of a feature or cluster over time. To link clus-
ters into a sequence, we assume that the change in value
distribution of a cluster from one time step to the next is
a gradual change. For a cluster at time stept, we assume
there is one or more near matching clusters (though there
is the possibility of dispersion or merging) in the next set
of clusters att + 1. If a cluster int is similar to a cluster
in t + 1, we link them together as being a sequence of clus-
ters [RPS01, PVHL03], or the evolution of a feature over
time.

Using these assumptions, we create a directed graph that
describes relationship of clusters over time. An abstract ex-
ample of the graph can be seen in Figure4. Each node
in the graph is one cluster generated by the time activity
clustering process. A node in the graph is connected by an
edge to all of the nodes forward and backward one step in
time. A strictly forward or backward path taken through the
graph forms a potential temporal sequence, which describes
a feature evolving over time. Since not all paths are valid
sequences describing evolving features, we evaluate which

paths in the graph describe a likely sequence class (the evo-
lution of a value distribution over time).

Figure 4: An abstract representation of a cluster graph af-
ter edge culling. Each node is a cluster found in clustering
process per time step. Remaining edges represent high prob-
ability that a cluster is the same cluster (feature) over time.
Sequences are paths through the graph that do not reverse
direction in time, which represent a feature evolving over
time.

3.2.1. Edge Probability

To estimate which paths in the graph are valid sequences,
we approximate the probability a valid progression of a clus-
ter (feature) evolving over time. To do this, the edges in the
graph are labeled with estimate probability that a cluster is
the same cluster in the next (or previous) time step with a
slight change. We assume that we are working in a Markov
process, such that a state (in this case a cluster) described in
a sequence of events contains all the necessary information.
Therefore, probability estimate of an edge is dependent only
on the two linked clusters.

Given a clustera and a set of clustersB = f b0;b1:::bng,
we estimate the probability thata is one of the clustersbi
from the setB, with a slight change. To generate this proba-
bility, we use similarity based on the value activity distri-
butions between two clusters, by measuring thetime his-
togram[KBH04, DMG� 04] distance between two clusters.
A time histogram is a series of histograms over time, like
a single box in Figure5, which records the value distribu-
tion of a cluster over time. Our time histogram notation in
our images, where each box is a time histogram, has time on
the x-axis and value on the y-axis. Pixel intensity is the bin
count of (time, value).

Given a time histogram functionH(x), it returns the
column-majorn� m2D histogram matrix for clusterx, where
the rows are value bins and columns are time steps. The time
histogram distanceD(a;b) between clustera to clusterb, is
the sum of the histogram distance calculated on each column
of H(a) andH(b). Equation1 is the time histogram distance
whered(x;y) is a histogram distance metric on histogram
vectors of lengthm. Histogram metrics,d(x;y), that we have
tested are EMD (Earth Mover's Distance), L2 norm, andc 2

histogram distance. There is little difference in the results
between the metrics.
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Figure 5: The left image shows a series of clusters over
time, shown as small multiples of time histograms, from the
argon bubble data set. Even though clusters share value
ranges over time, they are separated into two distinct activ-
ity classes. An abstract representation of a time histogram is
shown on the right.

D(a;b) =
n

å
i= 0

d(H(a)[i];H(b)[i]) (1)

From the time histogram distance function, we generate
a probability estimate. We calculate this using Equation2,
where theP is the probability that clustera is clusterbi in
the next time step. We calculate it as one over the histogram
distance, normalized by sum of all of the histogram distances
to the clusters in setB. p increases the sharpness of the prob-
ability distribution among choices ofa to bi . We have mainly
usedp= 2, similar to the 1=d2 model used in many scienti�c
and engineering methods.

P(a;bi) = 1=D(a;bi)p= å
8x2B

1=D(a;x)p (2)

3.2.2. Edge Culling and Sequence Generation

We could potentially �nd all of the paths in the graph, but
that would overload the user with choices. Additionally, only
a small number of paths are valid sequences (high probabil-
ity of an evolution of a feature). To reduce the paths to a
small set, we perform edge culling on the graph, removing
edges whose probability is below a certain thresholdg. The
threshold removes edges that possibly couldn't represent an
evolution of a cluster over time.

When sequences split or merge, an edge will have a lower
probability, because the probability estimation favors contin-
uation. We use the maximum probability that is the between
the forward and backward probability, to account for split-
ting and merging. Secondly, to retain split or merge edges
or edges,g needs to be low enough to retain those edges.
The rule of thumb for calculatingg is that it is (expected

probability of continuation / maximum splits or merges per
time step). For example, we useg = :45, which assumes a
split or merge of 2 clusters at most, as many of the continua-
tion edge probabilities, in our experience, are greater than:9
(:45= :9=2).

After edge culling, we scan the graph for possible starting
and ending clusters. Then, we use a strictly time forward or
backward �nd-all-paths algorithm between all of the starting
and ending pairs to generate the sequences from the graph.
The generated sequences and graph are shown to the user in
the next section.

4. Visualization

In this section, we describe how to visualize a data set from
the previous processes. We show the sequences, sequence
graph, and clusters that are extracted from the time-varying
data set. Visualization of the clustering and sequencing pro-
cess gives a user the ability to see a summary of his or her
time-varying data. From the collected information in clus-
tering and sequencing, we generate a time-varying transfer
function from a user selected sequence.

4.1. Sequence Visualization

Figure 6: After the data is analyzed, the sequences are vi-
sualized by the user. In this interface, the user can see the
results of the clustering and sequencing process. An abstract
example of the visualization is shown on the bottom.

To visualize the sequencing process, we show the infor-
mation contained in the graph and sequences. An example
visualization is seen in Figure6. In this interface, the user
can update the edge culling throughg, add or remove edges
manually, and rerun the sequence generation after altering
the edges. The clustering process has to be re-run if the user
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wishes to changek or w, which would generate a new graph
and clusters.

In Figure6, shown at the top left, is the cluster graph. A
node (cluster) is shown as a small time histogram of the data
contained in a cluster. The edges shown in the graph are the
remaining edges afterg culling, colored by probability. At
the bottom left, we show each of the sequences which were
found from traversing the culled graph. Their display format
is similar to the graph. To the right of each sequence, we
show a summary time histogram for each sequence. Con-
�dence statistics are shown for each of the sequences, in
an information box on the right. The con�dence metrics we
have used are the minimum edge probability of a sequence,
the average edge probability, and the multiplication of the
edge probabilities. Additionally, through visual inspection,
a user can also make an evaluation of the time histograms
and graph to see if a sequence is valid.

4.2. Time-Varying Transfer Functions

We have previously assumed that in a sequence of clusters
is there is a small shift in value distributions or histograms
over time for a feature. We referred to this as temporal conti-
nuity of clusters. To create a transfer function, we histogram
equalize a color and/or opacity map over time to match the
value distributions (histograms) in a sequence. By updating
the color and/or opacity map to re�ect the continuity of value
distributions in a cluster, we achieve visual continuity of a
feature over time.

We can generate dynamic transfer functions, with respect
to color and/or opacity, or a static transfer functions, by
remapping a transfer function map using the CDF (cumu-
lative distribution function) of the histograms in a selected
sequence. For a dynamic transfer function, we use the me-
dian (w.r.t. time) histogram of each cluster over time in a se-
quence. For a static transfer function, we create a single his-
togram by summing the median histograms. The histograms
represent the activity distribution in value space for a feature
over time.

To create a transfer function from sequence data, we use
an initial color and/or opacity mapM(v) that maps a value
v to a visual (color and/or opacity)c. The mapM is de�ned
over a value range with some distribution, which could be
the histogram in the �rst cluster of a sequence.I (p) is the
inverse cumulative distribution function for the value range
that M maps over, which returns the value that cumulative
probabilityp maps to.C(v) is the CDF of a histogram from a
cluster in a sequence that we wish to remap to, which returns
a cumulative probability given a valuev. We can create a new
mapN(v) by simple construction in Equation3. N can be for
a dynamic map, whereC would change for every time step
(use the a cluster's histogram for every time step), or for a
static map, whereC is the same for every time step (use a
summed histogram of all the clusters in a sequence).

N(v) = M(I(C(v))) (3)

This histogram equalization method also can be used for
isosurfaces, except it is a forward value mapping, remov-
ing the classi�cation mapM. Our difference from other
histogram equalization and quantization methods [TM05,
AFM06] is the clustering and sequencing process that pro-
ceeds it. If we apply the equalization to the global time his-
togram, with no sequence extraction, the result may not be
the same. Speci�c features (value activity) can be hidden in
the overall histogram, as can be evidenced in the overlapped
histograms of the argon bubble data in Figure5.

If we use an initial color map that is uniformly distributed,
the �rst equalized map will redistribute the colors to re�ect
the distribution of values in value space. This will apply
more colors in dense value distribution ranges, increasing
the color contrast and �delity. The difference between uni-
form color map and an equalized color map can be seen in
Figure7.

Figure 7: Visualization of CCMS temperature data. The left
image uses a uniformly distributed color and opacity map.
The right image uses histogram equalized color and opacity
map based a temporal sequence, focusing in on the sequence
of interest.

4.2.1. Dynamic vs. Static

We have noted a semantic distinction between a static color
map and a dynamic color map. Traditionally, the color to
value mapping has been �xed, such that a particular color
always has the meaning of a particular value. When a color
changes over time in a visualization, this has the meaning of
absolute value change. If we use a dynamic color map, the
color to value map is not static. Color change over time now
indicates a relative value change. A user who is analyzing his
or her data can become confused if they are not aware of this
distinction. While this can be confusing, having a dynamic
color map does have the bene�t of increasing color �delity
by using more colors in a packed value distribution range.
An additional bene�t is that dynamic color map subtracts
the mean (average) trend, and only shows the differences.

The opacity map can also be dynamic or static as well,
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independent of the color map. Using a dynamic opacity map
is easier to use over a dynamic color map. It allows the visu-
alization to be focused on the current value range of interest,
excluding colors (values) that are not part of a feature. When
using a static opacity map, all values of the color map are
shown, with no distinction on whether the visualized values
are part of the feature.

We show the different combinations of dynamic and static
color and opacity described below and in Figure8:

� Static Color, Static Opacity : Color change means abso-
lute value change. Context values outside of the current
cluster value range are visible.
Use this when the user just wants one map, and/or wants
absolute value meaning of color.

� Static Color, Dynamic Opacity : Color change means ab-
solute value change. Only current cluster values are visi-
ble.
Use this when the user wants absolute value meaning of
color, and also wants to focus on the current feature over
time.

� Dynamic Color, Static Opacity : Color changes mean rela-
tive value changes, and colors are compressed to the value
range. Context values outside of the current cluster value
range are visible.
Use this when the user wants higher color �delity, and/or
wants to subtract the mean trend.

� Dynamic Color, Dynamic Opacity : Color changes mean
relative value changes, an colors are compressed to the
value range. Only current cluster values are visible.
Same as above, but this has the added bene�t of only
showing values in the current feature over time.

4.2.2. Cluster Masks

There may be a value collision between two clusters in one
time step, like in Figure5. It is not necessarily true that af-
ter the clustering process the only points that have a value
x at time stept are in one cluster. For example, one clus-
ter of points may have an upward trend, and another cluster
of points may have a downward trend, but they both start at
the same value. This is one way that global time histogram
methods for transfer functions cannot classify temporal ac-
tivity as accurately, because they do not have any knowledge
of local change in value.

When using traditional transfer functions, the map usu-
ally only takes value into consideration. With value collision
in sequences, transfer function maps could overlap in value
space. We can disambiguate between two or more trans-
fer functions that share a value withcluster masks. Cluster
masks are the spatial extent of clusters, recorded as cluster
membership per data point over time. Masks can be used as
alpha volume masks, as in Figure9. By masking, we cull
data points by position that do not belong to the currently
visualized feature (sequence), that a value to color map can-
not account for. Furthermore, the spatial boundaries between

Figure 8: The earthquake data set with different transfer
functions computed on a temporal sequence. Top row is
static color, bottom row is dynamic color. Left column is
static opacity, right column is dynamic opacity.

Figure 9: The argon bubble data set, visualized with a dy-
namic color/static opacity transfer function. The right image
uses a cluster mask to only show the data points that are ex-
actly part of the sequence.

clusters can also be used for visual enhancement, such as a
gradient �lter for lighting and opacity enhancements.

5. Conclusion

Our semi-automatic generation of transfer functions for
time-varying data reduces the majority of guesswork and te-
dium of manually creating a time-series transfer function.
We �nd features in time-varying data sets corresponding
to similar value activity, and create transfer function maps
based on value distributions shifting over time. During the
process of creating a transfer function, the graph and se-
quence interface can provide additional insight.
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For future work, the algorithm could become more auto-
matic by algorithmically estimatingk;w, andg. If we can
integrate spatial �ltering and locality into our clustering, se-
quence con�dence would be increased through additional in-
formation [WYM]. This may allow us to increase the num-
ber of features (k) in a reliable fashion, by increasing the
feature vector (TAC), without causing temporally discontin-
uous sequences from over-�tting. Multi-scale temporal �l-
tering of time activity [WS09], for detecting long vs. short
temporal trends could also augment the TAC vector. This
may also lead to multi-scale transfer functions that reveal
long vs. short trends. Currently, the majority of the com-
putational time is spent in the clustering process, which is
run on a parallel machine. Clustering runs in tens of min-
utes, while the sequencing and transfer function generation
is done on a single machine, in seconds. Multi-scale spatial
�ltering methods would reduce the amount of data that is
processed, and speed up the clustering and the overall pro-
cess.

This work was supported in part by NSF ITR
Grant ACI-0325934, NSF RI Grant CNS-0403342,
NSF Career Award CCF-0346883, and DOE SciDAC
grant DE-FC02-06ER25779. A reference implemen-
tation source code for this work can be downloaded
at http://www.cse.ohio-state.edu/~hwshen/
Research/Gravity/Download.html .

Figure 10: Visualizations using transfer functions generated
via clustering and sequencing.
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