
Cluster Comput
DOI 10.1007/s10586-014-0360-5

Effective and efficient data sampling using bitmap indices

Yu Su · Gagan Agrawal · Jonathan Woodring ·
Kary Myers · Joanne Wendelberger · James Ahrens

Received: 29 September 2013 / Revised: 14 February 2014 / Accepted: 18 February 2014
© Springer Science+Business Media New York 2014

Abstract With growing computational capabilities of par-
allel machines, scientific simulations are being performed at
finer spatial and temporal scales, leading to a data explosion.
The growing sizes are making it extremely hard to store, man-
age, disseminate, analyze, and visualize these datasets, espe-
cially as neither the memory capacity of parallel machines,
memory access speeds, nor disk bandwidths are increasing
at the same rate as the computing power. Sampling can be
an effective technique to address the above challenges, but it
is extremely important to ensure that dataset characteristics
are preserved, and the loss of accuracy is within acceptable
levels. In this paper, we address the data explosion prob-
lems by developing a novel sampling approach, and imple-
menting it in a flexible system that supports server-side sam-
pling and data subsetting. We observe that to allow subsetting
over scientific datasets, data repositories are likely to use an
indexing technique. Among these techniques, we see that
bitmap indexing can not only effectively support subsetting
over scientific datasets, but can also help create samples that

Y. Su (B) · G. Agrawal
Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210, USA
e-mail: su1@cse.ohio-state.edu

G. Agrawal
e-mail: agrawal@cse.ohio-state.edu

J. Woodring · K. Myers · J. Wendelberger · J. Ahrens
Los Alamos National Laboratory, Los Alamos, NM 87544, USA
e-mail: woodring@lanl.gov

K. Myers
e-mail: kary@lanl.gov

J. Wendelberger
e-mail: joanne@lanl.gov

J. Ahrens
e-mail: ahrens@lanl.gov

preserve both value and spatial distributions over scientific
datasets. We have developed algorithms for using bitmap
indices to sample datasets. We have also shown how only a
small amount of additional metadata stored with bitvectors
can help assess loss of accuracy with a particular subsampling
level. Some of the other properties of this novel approach
include: (1) sampling can be flexibly applied to a subset of
the original dataset, which may be specified using a value-
based and/or a dimension-based subsetting predicate, and (2)
no data reorganization is needed, once bitmap indices have
been generated. We have extensively evaluated our method
with different types of datasets and applications, and demon-
strated the effectiveness of our approach.

Keywords Big data · Bitmap indexing · Data sampling ·
Multi-resolution · Parallel processing

1 Introduction

Many of the ‘big-data’ challenges today are arising from
increasing computing ability, as data collected from simula-
tions has become extremely valuable for a variety of scientific
endeavors. With growing computational capabilities of par-
allel machines, scientific simulations are being performed at
finer spatial and temporal scales, leading to a data explo-
sion. As a specific example, the Global Cloud-Resolving
Model (GCRM) [25] currently has a grid-cell size of 4 km,
and already produces 1 PB of data for a 10 day simulation.
Future plans include simulations with a grid-cell size of 1 km,
which will increase the data generation 64-fold.

Finer granularity of simulation data offers both an oppor-
tunity and a challenge. On one hand, it can allow under-
standing of underlying phenomena and features in a way that
would not be possible with coarser granularity. On the other
hand, larger datasets are extremely difficult to store, man-

123

Cluster Comput

age, disseminate, analyze, and visualize. Neither the mem-
ory capacity of parallel machines, memory access speeds,
nor disk bandwidths are increasing at the same rate as the
computing power, contributing to the difficulty in storing,
managing, and analyzing these datasets. Simulation data is
often disseminated widely, through portals like the Earth
System Grid (ESG) [6], and downloaded by researchers all
over the world. Such dissemination efforts are hampered by
dataset size growth, as wide area data transfer bandwidths
are growing at a much slower pace. Finally, while visualiz-
ing datasets, human perception is inherently limited relative
to dataset sizes.

The above trends are leading to the following three prob-
lems:

1. Creating subsampled (lower-resolution) datasets from a
high resolution simulation dataset, on demand and effi-
ciently, while maintaining the characteristics of the orig-
inal dataset.

2. Assessing the loss of quality (with respect to the key sta-
tistical measures) incurred with a particular level of reso-
lution, on the given dataset, without having to take a pass
through the entire high resolution dataset.

3. Providing the above functionality in a flexible system,
which can support sampling at the server-side in response
to requests from the client-side, and combine sampling
with data subsetting.

1.1 Existing sampling techniques, limitations, and big data
needs

Though, to the best of our knowledge, no system provides
all of the above functionality, sampling itself has been exten-
sively studied. Broadly, different statistical sampling meth-
ods [12,32,45,47] have been proposed to find a represen-
tative subset of the entire dataset. Some popular techniques
include simple random sampling, where we select a certain
percent of elements randomly out of original dataset, and
stratified random sampling, where we first divide the dataset
into strata and then perform random sampling within each
stratum. The latter method maintains certain spatial proper-
ties of the original dataset. To compare the accuracy between
the sampled dataset and the original dataset, different error
metrics [28,46,22] have also been used.

However, as we argue below, the existing work does not
meet all the requirements, especially in the context of grow-
ing dataset sizes and the need for data dissemination and
analysis in a distributed environment.

1.1.1 Sampling accuracy

Two factors are extremely important while creating samples
of scientific datasets so as to facilitate accurate analysis. The
first is value distribution, i.e., the value distribution of the

sampled dataset should be as close to the original dataset
as possible. The second is spatial distribution, i.e., the data
accuracy should be maintained not only for the entire dataset
but also for various spatial sub-blocks. Most of the sampling
methods [35,46] developed in the context of scientific data
management are focused on the second factor, but ignore the
first one. On the other hand, value distribution based sampling
is well studied and has been proven to be a good method in
the database area [19,37]. These methods, however, are not
developed for scientific datasets, and do not even consider
spatial distribution. Consideration of both value distribution
and spatial locality is necessary for scientific datasets, and
unfortunately, none of the existing work has included both.

1.1.2 Error calculation without high overheads

After sampling, it is also important to know how accurately
the current sample is able to represent the original dataset.
Different error metrics, such as mean, variance, histogram1

and Q–Q plot2 are used as diagnostics of the accuracy. With
increasing dataset sizes and the distributed nature of analysis,
there are several challenges in applying these methods. In
particular, when the goal is to find the smallest sample that
can achieve a satisfactory accuracy, the traditional sampling
process involves the following (possibly iterative) process:
(1) sample generation, and (2) error metrics calculation. If
the error is too high, repeat with a larger sample, starting from
step 1. The entire process can be extremely time consuming,
especially if one needs to iterate multiple times. In particular,
with the current methods, there is no way to know in advance
what may be the smallest sample size at which acceptable
accuracy levels can be achieved.

1.1.3 Flexible data analysis over any subset

In many cases, users are only interested in data analysis or
visualization over a subset of the data. For example, only
certain timestamps may be of interest, and/or only a particu-
lar spatial subarea needs to be analyzed. Even if server-side
subsetting is available, the resulting dataset size may be very
large. Thus, the sampling method should be such that it can
be applied to any specified subset. Unfortunately, existing
sampling methods cannot support such flexible data subset
sampling.

1.1.4 Data sampling without data reorganization

Certain sampling methods, such as KDTree-based stratified
sampling [47], have been shown to be effective for scientific
datasets. However, before sampling can be performed, data

1 http://en.wikipedia.org/wiki/Histogram
2 http://en.wikipedia.org/wiki/Q-Q_plot

123

http://en.wikipedia.org/wiki/Histogram
http://en.wikipedia.org/wiki/Q-Q_plot

Cluster Comput

reorganization is necessary (An option without reorganiza-
tion is to store an array of indices to restore the previous order
of the data after KD-tree sorting, but this option incurs big
storage cost). This imposes huge memory and disk I/O costs.
Moreover, it is not possible to maintain multiple copies of
a massive dataset, and sampling is not the only operation to
be performed at server-side. After reorganization, the orig-
inal data order is broken and it is more time-consuming to
support other data analysis such as data subsetting and visu-
alization. Thus, we need sampling methods which operate
while maintaining the data in the original format.

1.1.5 Multi-resolution sampling to support interactive data
analysis

In many cases, users that are interested in interactive data
analysis or visualization need to have samples correspond-
ing to different sampling levels. Such multi-resolution sam-
pling can provide different granularity of data to users. There
are certain non-trivial challenges in providing such samples,
such as storing multiple levels of samples efficiently. One
desirable property is that each higher-resolution sample set
should include lower-resolution samples, so that unnecessary
data loading is avoided while switching sampling levels.

1.2 Our contributions

In this paper, we address the above limitations of existing
work by developing a novel sampling approach. We observe
that to allow subsetting over scientific datasets, data repos-
itories are likely to use an indexing technique [41]. Among
these techniques, we see that bitmap indexing can not only
effectively support subsetting over scientific datasets, but can
also help create samples that preserve both value and spa-
tial distributions over scientific datasets. We have developed
algorithms for using bitmap indices to sample datasets. We
have also shown how only a small amount of additional meta-
data stored with bitvectors can help assess loss of accuracy
with a particular subsampling level, i.e., we do not need to
take a pass over the entire sampled dataset to calculate accu-
racy based on these metrics. Some of the other properties of
this novel approach include: (1) value distribution as well as
spatial distribution of the original dataset are preserved, (2)
sampling can be flexibly applied to a subset of the original
dataset, which may be specified using a value-based and/or a
dimension-based subsetting predicate, (3) no data reorgani-
zation is needed, once bitmap indices have been generated,
(4) multi-resolution sampling is developed to help users per-
form interactive post-analysis, and 5) parallel sampling is
supported to further improve data sampling efficiency.

We have extensively evaluated our method with differ-
ent types of datasets and applications. First, considering two
applications - visualization and clustering, we show that

server-side sampling can drastically improve the efficiency
of analysis of remote datasets. Next, we show that our method
has much better accuracy than the simple random sampling
and the stratified random sampling methods, and with respect
to different metrics, either better or comparable performance
to KDTree-based sampling (which requires expensive data
reorganization). Next, we show that our error pre-calculation
methodology, a unique characteristic of our approach, gives
very accurate estimation of error in sampled datasets. Next,
We analyze the sample generation time with our approach,
and show that when error calculation time and possibil-
ity of resampling to meet desired accuracy is included, our
method outperforms other approaches. We also show that we
can combine our sampling method with value-based and/or
dimension-based subsetting effectively. Finally, we show that
parallel sampling method can further improve data sampling
efficiency.

In this paper, we extend the work published in an earlier
conference [42]. Additional material in this paper includes
we apply our sampling method to multiple attributes (with
high correlation among each other) to help users perform
efficient correlation analysis. We propose a parallel indexing
and sampling framework to support more efficient analysis
over datasets which contain a collection of different attributes
in a distributed environment. We extend our method to sup-
port multi-resolution data analysis which allows users to per-
form interactive data analysis from lower resolution to higher
resolution efficiently. Finally, we test the accuracy of our
method with more error metrics (Signal-to-Noise Ratio and
Kolmogorov–Smirnov Value).

2 System overview

This section gives an overview of the system we have devel-
oped to support flexible server-side sampling (and subsetting)
of large datasets. Technical details of the sampling method
will be given in the next section.

Figure 1 shows a high-level overview of our system. In our
previous work we designed a system to support flexible data
subsetting (including both value-based and dimension-based
predicates) using a standard SQL-like interface [40,41]. The
advantage of this approach is that a simplified virtual or high-
level view of the dataset is presented to users. Thus, users
downloading the data do not need to be familiar with the
details of the data format. Instead, they can specify subsetting
(and now sampling) requests with the high-level view.

There are two main modules in the system, the Query
Analysis Module and Query Execution Module. The Query
Analysis Module takes an SQL query and corresponding
metadata as input and generates a query request (in a spe-
cific format internal to the system) as the output. The SQL
Parser is responsible for parsing the SQL query and generat-
ing a parse tree. We have implemented the parser by making

123

Cluster Comput

SQL Parser

Metadata Parser

Query Request Genenator

Data Reader

Schemas
Info

Layouts
Info

SQL
Grammar

Points ID Set

Data Result

Query Analysis Query Execution

Sample?

Error Prediction

File Names
Var Names

Bitvectors

Query
Request Bitmap Indexing

Index Sampling

Client-Side

SQL Query

No

Yes

Fig. 1 System architecture

certain modifications to the parser from SQLite3, which is
a lightweight open-source database engine. After the parse
tree is generated, the Metadata Parser will take the data file
names and variable names as input, look up corresponding
metadata files, find the data schema and data layout informa-
tion, and load them into memory.

The second major module, Query Execution Module, takes
the query request as input, performs data subsetting and sam-
pling based on bitmap indices, and sends the data result back
to the client. The Bitmap Indexing performs different index-
ing operations based on the query request and generates a
collection of bitvectors which satisfies the current query as
output. After that, we check to see if sampling is needed for
the current query. If data sampling is not required here, the
Data Reader will query the data subset based on the indexing
information and return the result to the client. Otherwise, the
Data Sampling sub-module will generate data samples based
on bitmap indices.

There are two main components in the Data Sampling
sub-module: Error Prediction and Index-based Sampling.
Our approach includes a novel error prediction mechanism
based on bitmap indices. With the help of this mechanism,
we are able to pre-calculate approximation errors before actu-
ally sampling the data. Moreover, the error estimation can be
performed based on indices instead of scanning through the
entire sample. While the latter also reduces the error calcula-
tion time, our pre-calculation method allows a user to choose
a sampling level which maintains a desired level of accuracy.
Moreover, this alleviates the need for extracting a sample,
calculating the error, and then resampling (likely with a dif-
ferent subsampling level), which can be very expensive in
practice.

After error estimation, the Index-based Sampling compo-
nent performs data sampling directly over bitmap indices and
generates a set of data record identifiers as the result. Then

3 http://www.sqlite.org

the Data Reader will take the data record identifiers as the
input, extract the data records, and return the results.

Besides error pre-calculation, which can improve the over-
all sampling efficiency significantly, and the overall effective-
ness of our method, there are at least three other advantages
for our system.

2.1 Small preprocessing costs

If the data repository already uses bitmap indices, or will
like to use bitmap indices to efficiently obtain subsets of the
original dataset, we can directly apply our sampling method
without any preprocessing. For those applications without
bitmap indexing support, the computational complexity of
index generation is only O(n log(m)) where n is the number
of total elements and m is the number of bitvectors [50].
With the help of binning, m can be much smaller than n,
so log(m) can be considered a constant number. Thus, our
method is much faster compared with sampling methods with
O(n log(n)) preprocessing time, such as the KDTree-based
method [47]. Another advantage of our method is that we do
not need any modifications or reorganization of the original
dataset. All sampling operations are performed using data in
the original format and the bitmap indices.

2.2 Tradeoff between accuracy and sampling/memory costs

The bitmap indexing allows flexible multi-level indices over a
given dataset. The low-level bitmap indices are able to reflect
data features at a fine granularity, whereas the high-level
indices improve the efficiency by binning a group of low-level
bitmap indices together. By choosing to perform sampling
using high-level or low-level bins, and even choosing the bin
size at one or both levels, one can achieve the desired tradeoff
between accuracy of sampling and time/memory costs of the
sampling process.

2.3 Combining sampling and subsetting

Since our system is built on top of a data subsetting system,
users can combine sampling with subsetting. Moreover, such
queries can be executed efficiently because of the properties
of bitmap indices. We will elaborate on this later.

3 Sampling using bitmap indices

This section first provides background on bitmap indexing
and then introduces our data sampling method using bitmap
indices. We also describe five enhancements of our sampling
method, which are error prediction, sampling over a data
subset, sampling to support multi-attributes data analysis,
multi-resolution data sampling and parallel data sampling.

123

http://www.sqlite.org

Cluster Comput

ID Value e0 e1 e2 e3 i0 i1

=1 =2 =3 =4 [1, 2] [3, 4]

0 4 0 0 0 1 0 1

1 1 1 0 0 0 1 0

2 2 0 1 0 0 1 0

3 2 0 1 0 0 1 0

4 3 0 0 1 0 0 1

5 4 0 0 0 1 0 1

6 3 0 0 1 0 0 1

7 1 1 0 0 0 1 0

Dataset Low Level Indices High Level Indices

Fig. 2 An example of bitmap indexing

3.1 Background—bitmap indexing

Indexing provides an efficient way to support value-based
queries and has been extensively researched and used in the
context of relational databases. Bitmap indexing, which uti-
lizes the fast bitwise operations supported by the computer
hardware, has been shown to be an efficient approach, and
has been widely used in scientific data management [34,50].
In particular, recent work has shown that bitmap indexing can
help support efficient querying of scientific datasets stored in
native formats [11,41].

Figure 2 shows an example of a bitmap index. In this
simple example, the dataset contains a total of 8 elements
with 4 distinct values. The low-level bitmap indices contain
4 bitvectors, where each bitvector corresponds to one value.
The number of bits within each bitvector is the same as total
number of elements in the dataset. In each bitvector, a bit
is set to 1 if the value for the corresponding data element’s
attribute is equal to the bitvector value, i.e. the particular
distinct value for which this vector is created. The high-level
indices can be generated based on either the value intervals
(equal-interval partitioning) or value ranges (equal-density
partitioning). From Fig. 2, we can see two high-level indices
are built based on value intervals.

This simple example only contains integer values. Bitmap
indexing also has been shown to be an efficient method for
floating-point values [49]. For such datasets, instead of build-
ing a bitvector for each distinct value, we can first group a
set of values together (binning) and build bitvectors for these
bins. This way, the total number of bitvectors is kept at a
manageable level.

From the example we can also see that the number of bits
within each level of bitmap indices is n × m, where n is the
total number of elements and m is the total number of bitvec-
tors. This can result in sizes even greater than the size of the
original dataset, causing high time and space overheads for
index creation, storage, and query processing. To solve this
problem, run-length compression algorithms such as Byte-
aligned Bitmap Code (BBC) [4] and Word-Aligned Hybrid

(WAH) [48] have been developed to reduce the bitmap size.
The main idea of these approaches is that for long sequences
of 0s and 1s within each bitvector, an encoding is used to
count the number of continuous 0s or 1s. Such encoded
counts are stored, requiring less space. Another property of
the run-length compression methods is that it supports fast
bitwise operations without decompressing the data.

3.2 Stratified random sampling over bitvectors

Consider data storage in a large-scale scientific repository. If
we are using bitvectors to be able to retrieve subsets of the
original dataset [11,41], the question we want to focus on is
“can the same bitvector be used to obtain accurate and repre-
sentative samples, while also assessing the loss of accuracy
with a particular sampling level”. It turns out that bitvectors
can not only be used in this fashion, but they also provide sev-
eral advantages over existing and popularly used sampling
techniques.

We now describe the bitvector based sampling method we
have developed. The basic idea in our method is to perform
random stratified sampling over each bitvector, which corre-
sponds to a particular value or, more likely, a bin of values.
Specifically, we extract the same percent of samples out of
each bitvector. By sampling over bins with equal probability,
we are able to keep value distribution in the sampled dataset
close to that of the original dataset. In fact, as we will show
below, this approach preserves entropy of the original dataset,
a highly desired property of samples in many applications.

Within each bitvector, we first divide the bitvector into
sectors of a certain size, and choose the same percent of sam-
ples out of each sector. This way, we can also preserve the
value distribution within each spatial region. Furthermore,
when multi-level bitvectors are created (such as the exam-
ple earlier in Fig. 2) this method can be applied to either
the low-level or the high-level index. This choice allows a
tradeoff between efficiency and accuracy. As we mentioned
in Sect. 3.1, bitmap indexing supports two binning strate-
gies: equal-interval partitioning and equal-density partition-
ing. Our method can be applied to both methods. In this paper,
we use equal-interval partitioning strategy to build indexing,
and the sampling method using equal-density partitioning is
similar.

We now explain the steps of our method in more detail,
using an example in Fig. 3. There are three main steps:

3.2.1 Building bitmap indices

In this example, the small dataset contains 32 elements,
so each bitvector has 32 bits. The number of distinct val-
ues is 4. The low-level bitmap indices contain 4 bitvectors:
e0(= 1), e1(= 2), e2(= 3), e3(= 4), and the high-level
bitmap indices include 2 bitvectors: i0([1, 2]), i1([3, 4]). In

123

Cluster Comput

Sampling over Low Level Indices:

e0 =1 00010100 | 00110001 | 01010110 | 00010001

se0 =1 00000100 | 00100001 | 00000110 | 00010000

e1 =2 00100000 | 10000010 | 00100000 | 10000010

se1 =2 00000000 | 10000000 | 00100000 | 00000010

e2 =3 10001001 | 00000100 | 10001001 | 00100100

se2 =3 00001000 | 00000000 | 10000001 | 00100000

e3 =4 01000010 | 01001000 | 00000000 | 01001000

se3 =4 01000000 | 00001000 | 00000000 | 00001000

Sampling over High Level Indices:

i0 [1, 2] 00110100 | 10110011 | 01110110 | 10010011

si0 [1, 2] 00100100 | 10000010 | 00010100 | 10010000

i1 [3, 4] 11001011 | 01001100 | 10001001 | 01101100

si1 [3, 4] 10001001 | 00001000 | 10001000 | 01000100

Fig. 3 Our proposed sampling method: stratified random sampling
over bitmap indices

this simple example, all values are integers, though as we
mentioned in Sect. 3.1, bitmap indices can be (and have been)
used for floating-point values by generating bins with value
ranges.

3.2.2 Dividing bitvectors into sectors

In order to preserve distribution of values in each spatial
region, bitmap indices should be logically divided into spa-
tial sectors. In the figure, we can see that for both the low-
level and the high-level bitmap indices, every bitvector is
divided into 4 sectors, and there are 8 bits within each sector.
The selection of the sector size is tradeoff between efficiency
and accuracy. The bigger the sector size we use, the better
sampling efficiency we can achieve but more sampling accu-
racy we lost (spatial locality). In this work, we just manually
select a certain sector size, and more analysis of choosing
sector size will be left to future work.

3.2.3 Random sampling over each sector

After creating sectors, random sampling can be performed
within each sector, and for each bitvector, to generate data

samples. Within each bitvector, random sampling is only
applied to 1-bits. To preserve value distribution within each
region, we need to make sure sample percentages over each
sector are the same. One advantage of using bitmap indexing
is that its implementations help us locate all 1-bits efficiently.
In Fig. 3, we are generating 50 % samples out of the original
dataset. We can see that se0, se1, se2, se3 are identifiers of
data records that are in the sample generated using the low-
level bitvectors, whereas si0, si1 are the data records for the
sample using the high-level bitvectors. For both low-level
and high-level bitmap indices, within each sector, only half
of the 1-bits are picked. For example, after sampling, the
number of 1-bits in the sample bitvector se0 is 6, which is
only half of that in original bitvector e0.

From the figure, we can also see that although low-level
bitmap indices have more bitvectors, each bitvector has fewer
1-bits. On the other hand, the number of bitvectors in the
high-level bitmap indices is smaller, but more 1-bits exist
in each bitvector. Hence, both methods generate sampled
datasets of the same size. Low-level bitmap indexing is able
to achieve better accuracy because it reflects the value distrib-
ution at a finer granularity. However, it also has an additional
time cost, because of higher indices loading time and bitvec-
tor striding time.

Finally, we point out the property of this method with
respect to preserving entropy. Information theory and entropy
have been extensively used while sampling data (or even
selecting angles, streamlines, or other features) in graphics
and visualization, as also summarized by Xu et al. [51].

Formally, if X is a random variable with a series of pos-
sible outcomes x, where x ∈ {x1, x2, . . . , xn}, and if the
probability for the random variable to have the outcome xi
is p(xi), then Shannon’s entropy is defined as

H(X) =
∑

i

p(xi) × log(1/p(xi)).

Assuming no binning is performed, and sector sizes are
large enough that precisely the same fraction of values can be
chosen, we can see that the sampled dataset using bitvectors
will have the same distribution of values, or the same entropy.

3.3 Error prediction

After sampling, it is also important to know how accurate the
sampled dataset is compared with the original dataset. Tradi-
tional sampling methods can only calculate error metrics after
samples are generated, and if the error is too high, the entire
sampling process has to be repeated with another sample per-
centage. As we will show now, with bitvectors we are able to
pre-calculate error metrics based on bins. Thus, we can per-
form error predictions analysis to find a sample percentage
which will give desired accuracy levels, and then can perform
data sampling only once. This is a significant advantage, since

123

Cluster Comput

Fig. 4 Metadata generation for
error prediction

e0 =1 00010100 | 00110001 | 01010110 | 00010001

count(0) count(0, 0) count(0, 1) count(0, 2) count(0, 3)

e1 =2 00100000 | 10000010 | 00100000 | 10000010

count(1) count(1, 0) count(1, 1) count(1, 2) count(1, 3)

e2 =3 10001001 | 00000100 | 10001001 | 00100100

count(2) count(0, 0) count(0, 1) count(0, 2) count(0, 3)

e3 =4 01000010 | 01001000 | 00000000 | 01001000

count(3) count(0, 0) count(0, 1) count(0, 2) count(0, 3)

c c0 c1 c2 c3

11 2 3 4 2

6 1 2 1 2

9 3 1 3 2

6 2 2 0 2

the error calculation method only takes at most O(m) time,
where m is the number of bitvectors. In comparison, sample
generation normally takes O(n) time, where n is the number
of data records in the original dataset, and n >> m.

As we stated earlier, while evaluating quality of a sam-
pled dataset, different error metrics, like mean, variance, his-
togram and Q–Q plot are used. In particular, for our dis-
cussion we consider error metrics of two types: (1) mean,
variance, histogram, and Q–Q plot for each variable, and (2)
mean and variance for each sector.

We need to calculate and store some additional informa-
tion during bitmap index generation. Figure 4 shows the
metadata generation over bitmap indices. For dataset or vari-
able level error calculation, the only additional information
we need is the total number of 1-bits within each bitvec-
tor. From the figure, we can see that count(0), count(1),
count(2) and count(3) record the total number of 1-bits for
each bitvector. The results are stored in the first column of
the 2-dimensional count matrix c. The metadata we need for
sector-level mean and variance calculation is the number of
1-bits within each sector. From the figure, we can see that for
bitvector e0(= 1), count(0, 0), count(0, 1), count(0, 2) and
count(0, 3) record the number of 1-bits within each sector.
The result is stored in columns c0, c1, c2 and c3 of the count
matrix.

Now we elaborate on calculation of specific metrics. Our
approach can also be referred to as error pre-calculation,
which is in contrast to error post-calculation normally done
with the traditional sampling methods.

3.3.1 Mean, variance, sector means, and sector variances

We now show how to pre-calculate mean and variance of
the sampled dataset based on bins and the count matrix. The
input is the representative value (value) of each bin, which
we determined at the time of index generation, and the total

number of elements (count) within each bin, which we can
find from the count matrix. Besides that, each time we also set
a sample percentage to decide the size of the sample result,
denoted as SamplePercent. Equation 1 computes the number
of samples selected from each bitvector (scounti) based on
counti and SamplePercent:

scounti = counti × SamplePercent. (1)

Our method fetches the same percent samples out of each
bitvector, which is equal to SamplePercent. Hence, by mul-
tiplying counti with SamplePercent, we are able to compute
the approximate number of samples within each bitvector.
Now, Eq. 2 calculates the mean value of the sampled dataset:

Mean =
m∑

i=1
(scounti ×valuei)

m∑

i=1
(scounti)

. (2)

Within each bitvector, we know both the representative
valuei and sample size scounti . By multiplying these two
factors together, we can get the sum value of samples in the
current bitvector. Based on that, we can calculate the total
value by adding the sum value of each bitvector together. We
are also able to count the total number of sample elements
by adding scounti of each bitvector together. Based on the
sum value and total sample elements count, we can get the
mean value.

Equation 3 calculates the variance of the sampled dataset.
We first compute the value differences within each bitvector
based on mean and valuei , then add all value differences
together and finally divide by the total number of sample
elements:

V ariance =
m∑

i=1

(
scounti ×(Mean−valuei)

2)

m∑

i=1
(scounti)

. (3)

123

Cluster Comput

The method of calculating sector means and sector variances
is similar. We simply need to apply the Eqs. 2 and 3 for each
sector.

We can see that our approach, error pre-calculation, can
calculate mean and variance within O(m) where m is the
total number of bitvectors. Note that in contrast, the error
post-calculation method will have to scan the entire sampled
dataset twice to compute the mean and the variance. The time
complexity is O(s), where s is the sample size.

3.3.2 Histogram

The input is value, count and SamplePercent. Based on Eq. 1,
we can obtain the number of sampled elements for each
bitvector (scounti). Now,

Probi = scounti
m∑

i=1
(scounti)

.
(4)

Equation 4 calculates each value Probi in the histogram by
simply dividing the sample size of each bitvector scounti by
the total sample size. This way, we obtain the element prob-
ability of each bitvector. By calculating probabilities over all
bitvectors, we are able to generate a histogram.

This method can compute the histogram within O(m),
where m is the number of bitvectors. In comparison, error
post-calculation has to first perform a Radix Sort4 over the
entire sampled dataset. After that, it needs to count the num-
ber of elements within each bucket and then divide this num-
ber by the total sample size. The time complexity is O(s)
where s is the sample size.

3.3.3 Q–Q plot

We first recap the definition of a Q–Q plot. Viewing the orig-
inal dataset and the sampled dataset as two distributions, we
compare them by plotting their quantiles against each other.

Algorithm 1 shows how to calculate a Q–Q plot using
bitvectors. The input is s which indicates the total number of

4 http://en.wikipedia.org/wiki/Radix_sort

sample elements; m the total number of bitvectors; q the total
number of quantiles; count the number of elements within
each bitvector; and value the representative value of each
bitvector (calculation described below). In line 1, we define
a variable curCount to record the total number of elements
that are smaller than the value of the current bitvector. The
variable pos indicates each quantile position identifier in the
sampled dataset. It can be computed based on total sam-
ple size (s), multiplying it with the quantile percentage, as
shown in line 8. Lines 3–12 compute the quantile value based
on each quantile position. We iterate from the bitvector with
the smallest value to the bitvector with the largest value. If
the current quantile position pos is larger than curCount, we
update the curCount and go to the next bitvector, as shown
in line 4 and line 10. If pos becomes smaller than curCount,
it means the current quantile is located within the current
bitvector. Then we can record the representative value of the
current bitvector as the quantile value and go to the next
quantile, as captured by lines 5 through 8. We keep perform-
ing this calculation until we find the value of all the desired
quantile positions.

Our method is able to calculate the Q–Q plot with O(q) in
the best case and O(q + m) in the worst case, where q is the
total number of selected quantiles. In comparison, the error
post-calculation method has to first perform a quick sort over
the entire sampled dataset to calculate the Q–Q plot. After
that, certain quantiles need to be selected out of the sorted
dataset as Q–Q plot values. For example, we can fetch the
data elements located at 1, 2, . . . , 100% positions out of the
sorted sample dataset as the result. The time complexity is
O(s × log(s)) where s is the sample size.

Now, we describe how we calculate value, the represen-
tative value of a bitvector, when we have multi-level bitmap
indices. For low-level bitmap indices, we can simply use
the mean or the median value as the representative value
of each bin. For high-level bitmap indices, each bitvector
indicates a relatively larger value range. In our work, we
use three indicators to predict errors for high-level bitmap
indices. In high-level bitmap indices, each bin indicates a
value range which has both a lower-bound and an upper-
bound. By using lower-bound and upper-bound values dur-
ing the error prediction process, we are able to calculate a
boundary on the actual error metric results. Besides, each
high-level bin is built by combining a group of low-level
bins together. Hence, we are able to calculate the value dis-
tribution of each high-level bin by looking at corresponding
low-level bins and finding an estimated value to represent
each high-level bin. This way, we are able to find the actual
error boundaries and also generate a relatively accurate error
prediction. In some cases, when the data range of the dataset
is large, the bin size of low-level bitmap indices can be big.
We can also apply this three indicators method to low-level
bitmap indices.

123

http://en.wikipedia.org/wiki/Radix_sort

Cluster Comput

Fig. 5 Multi-resolution
samples generation

10010001 00100100 11111111 1111111101000010 11000011

10000000 00000100

11000110 10010110

01000000 10000010

00000000 00000100

01000100 10000100

01000000 10000000
XOR

XOR

e0

se0 (50%)

se0 (25%)

sem (50%)

sem (25%)

em

Level 2: 25%

Level 1: 50%

Level 0: 100%

000......

001......

000......

se1

se1

e1

OR

OR

3.4 Sampling only a subset of data

When a data repository is disseminating data, a particular
user might only be interested in a certain subset of data, based
on spatio-temporal ranges (dimension subsetting) and/or spe-
cific values for attributes (value-based subsetting). However,
as the dataset size for the subset may still be too large, sam-
pling may still be needed.

Traditional sampling methods cannot efficiently support
data sampling over a user-specified subset of data that
includes value-based subsetting. For example, simple ran-
dom sampling, stratified random sampling and KDTree strat-
ified random sampling methods can all handle dimension-
based subsetting, but when value-based subsetting is involved,
they have to first generate data samples over the entire dataset
and then perform post-filtering, which is clearly not efficient.

Suppose we need to sample datasets at a certain level, in
conjunction with a subsetting condition, which includes both
dimension-based and value-based subsetting conditions. We
will proceed as follows. We first focus on the value subset-
ting conditions and search the (possibly) multi-level bitmap
indices to find corresponding bitvectors. Only these bitvec-
tors need to be loaded. Next we perform dimension subsetting
over the retrieved bitvectors. Finally, we apply the stratified
sampling only over this bitset.

3.5 Data subsetting and sampling over multiple attributes

In a typical scientific dataset, certain attributes can be stand-
alone, i.e., can be analyzed separately. On the other hand, cer-
tain attributes can be closely connected with each other, and
it is better to study them together. Suppose we consider the
output from the cosmology data described in Sect. 4 below.
Each record in the dataset corresponds to one particle and
includes multiple attributes. For example, the attribute mass
indicates the field value related to the current particle, and
VX, VY, VZ indicate the particle velocity in each of the three
spatial dimensions. mass can be analyzed separately, as it
does not have a strong connection with the other attributes.

For VX, VY, VZ, however, scientists prefer to analyze them
together to find the relationships among them.

The techniques we have described so far build indices over
each attribute separately, which does not fit the second sce-
nario very well. We now describe an extension to support
sampling to ensure a preserved distribution over multiple
attributes.

Suppose we need to sample with respect to two attributes,
X and Y. The entire process can be divided into 3 steps: (1)
Divide the value range of each attribute into one-attribute
bins, say, (X1, X2, . . . ,Xm1) and (Y1, Y2, . . . ,Ym2). (2) Form
multiple attributes bins (or mbins) (X1, Y1), (X1, Y2), . . .

,(Xm1, Ym2) based on the one-attribute bins generated in
the previous step. For each mbin, generate a bitvector and
initially set all bits to 0. (3) Scan through the dataset. For
each record, find its X and Y value, classify it into the cor-
responding mbin and set the corresponding bit to 1. Repeat
this process until all records are mapped to related mbins.

3.6 Multi-resolution sampling to support interactive
post-analysis

In many cases where users are interested in interactive data
analysis or visualization, multi-resolution sampling is nec-
essary to provide different granularity of the data to users.
For example, after examining the current level of samples,
users may want to either explore the next higher-resolution
sample (to enhance accuracy) or go to the lower-level sam-
ple (for more efficient analysis). Providing such functionality
efficiently is challenging. We propose a multi-resolution data
sampling method based on bitmap indexing to support inter-
active data analysis. Multi-level sample IDs are stored as
compressed bitsets, which saves the disk space. Our method
has the property that each higher-level bitset contains all IDs
(and thus the sampled values) of the lower-level bitsets.

Figure 5 shows the process of generating multi-level
samples using our index sampling method. Initially, there
are m bitvectors for the current dataset (e0, e1, ..., em). For
each bitvector ei , we apply the stratified random sampling

123

Cluster Comput

Scientific Dataset

File0

Var0 Var4Var3Var1

File1

Var2

P0 P1 P2 P3 P8 P9 P10P4 P5 P6 P7 P11 P18 P19P17P16P14 P15P13P12

Data Blocks

Data Files

Indices

Sampling

Variables

Fig. 6 Parallel indexing and sampling

method to generate corresponding first-level sample bitvec-
tor (sei (50 %) in this example). After that, we continue to
apply stratified sampling over the first-level sample bitvectors
to generate the second-level sample bitvectors (sei (25 %)

in this example). We keep generating lower-level bitvectors
based on current level until all resolution levels are gen-
erated. For each level sample bitvectors, we perform logic
OR operations among them to generate one bitset as the ith
level sample bitset. Compared with other multi-resolution
models [15,29], one advantage of our method is that with
the help of bitmap indexing, we do not have to store the
actual sample data elements for each distinct sampling level.
When the data size is huge, storing multi-level of samples
can be extremely resource consuming. Instead, we are able
to store the compressed bitset to represent each resolution
level, which reduces storage requirements (the size of the
bitset in each level after compression is much smaller than
the sample data). During data analysis, each time users want
to examine one sample level, we first provide the error pre-
diction results of current level. If users are interested in the
data sample, we find the actual sample based on the IDs spec-
ified within the current bitset. Moreover, another feature of
our method is that sampling at a higher-resolution includes
sampled data elements at the lower-level. Correspondingly,
the upper-level bitset contains all bits of lower-levels. If the
data analysis is moved from one-level to another, we do not
have to reload all the sampled data. Instead, we are able to
just add or remove the data elements by simply performing
one XOR operation between the two sample bitsets.

3.7 Parallel indexing and sampling

Datasets sizes for most science domains have been increasing
at a rapid speed. Parallel data sampling can become neces-
sary when the data sizes becomes extremely large. This sub-
section proposes a MPI-based parallel sampling framework
which generates sample dataset out of the original dataset

based on distributed bitmap indices. Different parallel lev-
els can be first defined for each scientific dataset, and we can
choose a parallel level based on the size of the dataset and the
available processes. If the number of processes is sufficiently
large, we can build up multiple distributed index files over
sub-blocks of the data. Then, each process is responsible for
performing data sampling over one index file (correspond to
one data block).

Figure 6 shows our parallel indexing and sampling frame-
work. Here we define three parallel levels: data files, vari-
ables, and data blocks. As shown in the figure, one scientific
dataset includes multiple data files, one data file includes
multiple variables, and one variable can be logically parti-
tioned into multiple blocks. To support parallel indexing and
sampling, during the index generation phase, instead of build-
ing and compressing bitmap indices over the entire variable,
we first logically partition each variable into a collection of
blocks, and then initialize multiple processes and make each
process build bitmap indexing over a set of blocks. This way,
the index generation is performed in parallel and is able to
achieve a good speedup. A global metadata file, which keeps
the relationship between dimension boundaries and bitmap
indices of each block, is generated. During the index sam-
pling phase, each process will be assigned with a certain
number of index files, depending on the number of index
files and available processes. If the number of processes is
sufficiently large, each index file will be assigned with one
process to generate data samples of current data block. This
way, the sampling operations over the entire dataset can be
performed in parallel, which greatly improves the efficiency.

4 Experimental results

In this section, we report results from a number of exper-
iments conducted to evaluate our sampling approach. We
designed experiments with the following goals: (1) To show

123

Cluster Comput

how data sampling is able to improve data analysis efficiency
in a distributed environment (where data source and resources
for data analysis are geographically separated), (2) To exam-
ine the accuracy of our bitmap indices sampling method and
compare it with a number of other sampling methods, (3) To
evaluate the accuracy of error pre-calculation, by comparing
predicted errors with the actual errors, (4) To compare the
efficiency of our method against other sampling methods, in
particular in view of error pre-calculation, (5) To show how
sampling over data subsets improves the efficiency, and (6)
To show how parallel indexing and sampling improves the
efficiency.

We used two different scientific datasets. The ocean
dataset is generated by the Parallel Ocean Program (POP) [23],
which is an ocean circulation model. The execution we used
has a grid resolution of approximately 10 km (horizontally),
and vertically it has a grid spacing close to 10 m near the
surface, increasing up to 250 m in the deep ocean. POP gen-
erates 1.4 GB output for each variable per time-slice, and
each variable is modeled with three dimensions: longitude,
latitude, and depth. The data is stored in the NetCDF format.
The cosmology dataset is generated by the Road-Runner Uni-
verse MC3, which is a large N-body cosmology simulation of
dark matter physics. An MC3 time step of 40003 (64 billion)
particles with 36 bytes per particle takes 2.3 TB per time-
slice. The particles generated per time-slice are split into a
collection of data files based on the spatial information. Each
particle within the file corresponds to one record, which is
formed by 8 attributes (X, Y, Z, VX, VY, VZ, MASS, TAG).
The data is stored in binary format.

In our experiments, the data repository and the server-
side data sampling are on the Darwin Cluster at Los Alamos
National Laboratory. Darwin consists of 120 compute nodes
with 48 core (12-core by 4 socket) 2 GHz AMD Opteron
6168 and 64 GB memory. The client-side data analysis is
performed on one compute node which has 8 cores Intel(R)
Xeon(R) CPU 2.53 GHz and 32 GB memory.

4.1 Improving efficiency of distributed data analysis with
sampling

In this experiment, we consider the following scenario. The
entire dataset is located on a remote server, and any analysis
must be done after the data is downloaded to the client-side.
We consider two distinct applications: data visualization and
data mining. In the data visualization scenario, we visual-
ize the sampled dataset using Paraview [2], a widely used
data analysis and visualization application. In the data min-
ing scenario, we take data samples as input and perform K-
means clustering using MATE [21], a map-reduce like sys-
tem. With these two applications, we compare the efficiency
of data analysis (including data downloading time), when
using the original dataset against the cases where different

100% 12.5% 1% 0.1%
0

200

400

600

800

1000

1200

1400

Sample Percentage

E
xe

cu
tio

n
T

im
e(

se
c)

Data Sample Time
Data Transfer Time(10 MB)
Data Transfer Time(100 MB)
Data Visualization Time

Fig. 7 Visualizing a remote dataset: execution time with and without
sampling

subsampling levels are used. In particular, we divide the data
processing time into three parts: (1) Server-side data sam-
pling time, (2) Data transfer time between the server and the
client, and (3) Client-side data analysis time. The second fac-
tor above varies with the wide-area data transfer bandwidths
one might have. For our experiments, we used two different
networks, one with 10 MB/s bandwidth and the other with
100 MB/s bandwidth.

Figure 7 compares the efficiency of the data visualization
using different subsampling levels: 100 %, which means that
we are using the original dataset without sampling, 12.5, 1,
and 0.1 %. The dataset without sampling is 11.2 GB in size
and is from the POP application. From the figure, we can
see that although our method incurs extra sampling costs
compared to the case when the original dataset is analyzed,
both the data transfer and analysis time is much lower (as
expected), and more than compensates for the sampling time.
Specifically, we find that compared to visualization over
the original dataset, if network bandwidth is 10 MB/s, the
speedup with 12.5 % sampling rate, 1 % sampling rate, and
0.1 % sampling rate is 4.82, 15.91, and 47.59, respectively. If
network bandwidth is 100 MB/s, the corresponding speedups
are 2.61, 6.72, and 19.02, respectively. Of course, another
consideration with sampling is the accuracy of the analysis,
which we will focus on in the next subsection.

Figure 8 compares the efficiency of K-means clustering
(data mining) execution, using the original dataset and the
three sampling levels (12.5, 1, and 0.1 %). The dataset is
from cosmology, and is 16 GB in size. The number of K-
means cluster centers is 10 and the number of iterations is
50. The number of threads is 4. From the figure, we can see
that, similar to data visualization, with the help of sampling,
the speedup with 10 MB/s network bandwidth ranges from
5.25 to 84.24, and the speedup with 100 MB/s network band-

123

Cluster Comput

100% 12.5% 1% 0.1%
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Sample Percentage

E
xe

cu
tio

n
T

im
e(

se
c)

Data Sample Time
Data Transfer Time(10 MB)
Data Transfer Time(100 MB)
K−means Execution Time

Fig. 8 Clustering a remote dataset: execution time with and without
sampling

width ranges from 3.26 to 39.8. Again, accuracy is another
consideration, which we will analyze next.

4.2 Accuracy comparison with different sampling methods

As we stated above, besides efficiency, accuracy is a very
important consideration for a sampling method. Using visu-
alization and clustering as representative data analysis appli-
cations, we not only evaluate the absolute accuracy of our
method, but also compare the accuracy against three other
methods.

The sampling methods we compare against are as follows.
Simple random sampling involves randomly selecting a data
subset out of the original dataset without focusing on any
features. Stratified random sampling [12] performs random
sampling within each stratum. Normally, the way these strata
are formed can preserve spatial distribution of samples, but
not the value distribution. KDTree-based sampling [47] has
been proven to be a good method for visualization, and has
also been applied to the cosmology dataset. It divides data
into strata by building a k-dimensional tree over the dataset.
The tree construction method is primarily based on spatial
dimension(s) but can also consider data values as one dimen-
sion. Random sampling is performed within each stratum to
generate a data sample. Because both data values and spatial
distribution are considered in forming the strata, KDTree-
based sampling has led to better accuracy than stratified ran-
dom sampling.

In our method, which we will refer to as index sampling,
we chose two bitmap indexing levels. The method we will
denote as small bin corresponds to the use of low-level bitmap
indices, which indicates fine-grained value distribution. The
method we will denote as big bin corresponds to the use of
high-level bitmap indices. Here, we group 10 small bins into

a big bin, and thus, value distributions are preserved only at
a coarser level. How to choose bin scale is very important. In
this work, we just manually group a certain number of small
bins into big bins and demonstrate the accuracy and efficiency
of our method with different bin scales. Basically perform
sampling using bigger bins improve the sampling efficiency
with some accuracy lost compared with using smaller bins.
In our future work, we plan to use a training model to decide
different bin scales for different variables. The datasets and
the variables used here are the same as the previous exper-
iment: TEMP from the POP dataset and (VX, VY, VZ) from
the cosmology dataset. The sample percentage is 0.1 % of the
original dataset.

It turns out that the appropriate error metrics for visual-
ization and clustering are very distinct. Now we discuss the
accuracy of the two applications separately.

4.2.1 Accuracy for visualization

Characterizing the impact of sampling on visualization
is hard, since human perception plays a role in how a
dataset is viewed. Based on the existing literature from
visualization [47], we used two types of error metrics:
averaging-based metrics and absolute-value-based metrics.
For averaging-based metrics, we used the following four indi-
cators: means of the value over 200 separate sectors, his-
togram using 200 value intervals, Q–Q plot with 200 quan-
tiles, and Signal-to-Noise Ratio (SNR). We calculated the
sector means, histogram, and Q–Q plot value of both the
original dataset and each sample dataset, and computed the
absolute value differences between the original dataset and
the sample dataset. To represent these charts, we use a Cumu-
lative Frequency Plot (CFP). In our plots (Fig. 9 for exam-
ple), a point (x,y) indicates that the fraction y of all calculated
absolute value differences are less than x. Since the error met-
ric value differences should be as small as possible, it implies
that a method with the curve to the left has a better accuracy
than the method with the curve to the right. Although aver-
age metrics are able to reflect the general accuracy of sample
data, most localized error effects may be lost in the metrics
due to the averaging effects. On the other hand, absolute-
value-based metrics, which define the maximum errors, are
able to help us analyze the worst case. Here, we calculate the
Kolmogorov–Smirnov (KS) value between original dataset
and sample dataset as the indicator of the absolute error. For
the bitmap index sampling method, the total number of small
bins of TEMP is 442, and the total number of small bins of
VX is 670. Each 10 small bins are grouped into a big bin.

The left subfigures of Figs. 9 and 10 show the absolute
value differences of sector means using the five sampling
methods (including two versions of our approach). The sim-
ple random sampling shows the worst accuracy. The strati-
fied random sampling, which considers spatial distribution,

123

Cluster Comput

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Mean Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Histogram Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Q−Q Plot Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

Fig. 9 Error (means, histogram, and Q–Q Plot) comparison using cumulative frequency plots: TEMP from POP dataset

0 6 12 18 24 30 36 42 48 54 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Mean Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Histogram Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Q−Q Plot Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

Fig. 10 Error (means, histogram, and Q–Q Plot) comparison using cumulative frequency plots: VX from cosmology dataset

achieves better accuracy than simple random sampling. How-
ever, as it does not consider value distribution, the results
are still worse than KDTree-based sampling and index sam-
pling. If we compare KDTree-based sampling with index
sampling, we can see that for POP data, index sampling (both
small bin and big bin) achieves better accuracy than KDTree-
based sampling. For cosmology data, KDTree-based sam-
pling shows better accuracy than index sampling (big bin).
However, index sampling (small bin) method still achieves
the best accuracy.

The middle subfigures of Figs. 9 and 10 show the absolute
value differences for histogram entries, comparing the five
sampling methods. KDTree-based sampling considers value
distribution by treating variable value as one dimension dur-
ing the KDTree sorting process. This method is more focused
on spatial partitions and only considers value distribution at
a very coarse level. Thus, as we can also see from the fig-
ures, for the cosmology dataset, the histogram results with
KDTree-based sampling are not as good as our method. For
the POP dataset, KDTree-based sampling and index sam-
pling with big bin achieve a similar accuracy. Index sampling
with small bin achieves a better accuracy than all the other
methods.

The right subfigures of Figs. 9 and 10 show the absolute
value differences of Q–Q plot values among the five sampling
methods. If we compare KDTree-based sampling with index
sampling, we can see that for the POP dataset, KDTree-based
sampling achieves the best accuracy, but for the cosmology

Table 1 Error comparison of signal-to-noise ratio

Sampling methods TEMP SNR VX SNR

Simple random sampling 41.12 7.69

Stratified random sampling 48.69 10.18

KDTree-based sampling 54.01 31.14

Index sampling (big bin) 56.43 23.87

Index sampling (small bin) 56.67 31.73

dataset, index sampling (both small bin and big bin) shows
better accuracy. On the whole, the Q–Q plot value differ-
ences between KDTree-based sampling and index sampling
are small.

Table 1 shows the SNR value of TEMP and VX. The
signal is the baseline variance divided by the mean squared
error, i.e. the noise. SNR approaches infinity when there is
no noise and negative infinity when there is no signal, i.e.,
the transformation doesn’t represent the “original” data as it
approaches negative infinity. SNR performs a point-to-point
comparison. To make it a useful indicator between original
data and sample data, SNR is calculated based on the strati-
fied mean values instead of points. From the table we can see
that, for both TEMP and VX, both simple random sampling
and stratified random sampling cannot achieve good accu-
racy, as the SNR value is much smaller than the other three
methods. If we compare KDTree-based sampling with index
sampling, we can see that for TEMP, both index sampling
(big bin) and index sampling (small bin) achieve better accu-

123

Cluster Comput

Table 2 Error comparison of Kolmogorov–Smirnov

Sampling methods TEMP K-S VX K-S

Simple random sampling 0.0012 0.005

Stratified random sampling 0.00058 0.0031

KDTree-based sampling 0.000098 0.00045

Index sampling (big bin) 0.00014 0.00028

Index sampling (small bin) 0.000013 0.000088

racy than KDTree-based sampling. For VX, KDTree-based
sampling shows better accuracy than index sampling (big
bin). However, index sampling (small bin) still achieves the
best accuracy.

Table 2 shows the Kolmogorov–Smirnov (KS) value of
TEMP and VX. This metric is derived from the two-sample
K-S test, which is used to evaluate if two samples come from
the same distribution. It measures the maximum difference
in cumulative probabilities between two samples. From the
table we can see that simple random sampling and strati-
fied random sampling still can not achieve good accuracy.
For TEMP, KDTree-based sampling method achieve simi-
lar accuracy as index sampling (big bin) method, and index
sampling (small bin) achieves the best accuracy. For VX,
both index sampling (big bin) and index sampling (small
bin) achieve better accuracy than KDTree-based sampling
method. In sum, for both average error metrics and absolute
error metrics, our method is able to achieve better accuracy
than the other three methods in most cases.

4.2.2 Accuracy for clustering

The error metric here is the difference between cluster cen-
ters, using the original and the sampled dataset. Specifically,
we first calculate cluster center values for the original dataset,
then calculate cluster center values for the sampled dataset,
and finally compute the Euclidean distance between cluster
centers in the the original dataset and the sampled dataset.
The dataset we used here is the cosmology data and the
indices are built over the three attributes VX, VY and VZ,
i.e., the multiple attribute sampling method summarized in
Sect. 3.5 is used here. The total number of multiple bins for
VX, VY, VZ is 2000.

Figure 11 shows the accuracy using four sampling meth-
ods. The X axis shows different sampling percentages (25,
12.5, 1, 0.1 %), and the Y axis shows the average cluster
center value differences. KDTree-based sampling considers
sorting based on spatial information first and then values.
In this case, this method sorts the data based on X, Y, Z
and then VX, VY and VZ. It achieves better accuracy com-
pared with simple random sampling and stratified random
sampling. Indices sampling method, which considers binning

25% 12.5% 1% 0.1%
0

20

40

60

80

100

120

Sample Percentage

A
bs

ol
ut

e
C

lu
st

er
 C

en
te

r
V

al
ue

 D
iff

er
en

ce
s

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Multi−Bin)

Fig. 11 K-means: accuracy differences with different sampling levels
and sampling methods

over VX, VY and VZ first and then spatial locality, achieves
better accuracy than all the other methods. As data sampling
percentage decreases, the advantage of our method becomes
even more prominent.

To summarize our discussion, we can observe the follow-
ing. Traditional methods from statistics, i.e., simple random
and stratified random sampling, cannot get accurate sam-
ples as they are not considering enough features of the data.
KDTree-based sampling, which is more focused on spatial
locality, achieves good accuracy on sector means and Q–Q
plots. However, the histogram result is not as good as for
bitmap index sampling. Our method, which considers the
value distribution first and then spatial locality, is able to
generate a better histogram, while at the same time achieving
good accuracy for sector means and Q–Q plots compared to
KDTree-based sampling. It also achieves a better result than
all the other methods when multiple attributes need to be
considered while sampling. Furthermore, our method allows
flexibility in choosing bin levels, and thus, users can adjust
the bin size and level to get the desired tradeoff between
accuracy and efficiency. Finally, as we will elaborate later,
another advantage of our method lies in its ability to pre-
calculate error levels.

4.3 Error prediction accuracy

As we have stated throughout, an important and distinct fea-
ture of our approach is the ability to pre-calculate error lev-
els. However, we need to verify if the predicted error results
are close to the actual error results. We now describe results
from an experiment designed for this purpose using the POP
dataset. The sampling percentage is 0.1 %.

In this experiment, we first calculate predicted error
metrics with the methods described earlier in Sect. 3.3,

123

Cluster Comput

0 72576000 145152000 217728000 290304000 362879999
−5

0

5

10

15

20

25

Spatial Strides

M
ea

n
V

al
ue

s

Actual Error
Estimated Error

−21.19 −15.69 −10.19 −4.69 0.81 6.31 11.81 17.31 22.81 28.31 33.11
0

0.05

0.1

0.15

0.2

0.25

0.3

Value Intervals

H
is

to
gr

am

Actual Error
Estimated Error

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Actual Error Quantiles

E
st

im
at

ed
 E

rr
or

 Q
ua

nt
ile

s

x=y
QQPlot Line

Fig. 12 Predicted and actual errors (means, histogram, and Q–Q plot): small bin method

0 72576000 145152000 217728000 290304000 362879999
−5

0

5

10

15

20

25

Spatial Strides

M
ea

n
V

al
ue

s

Actual Error
Estimated Error

−21.19 −15.69 −10.19 −4.69 0.81 6.31 11.81 19.31 22.81 28.31 33.11
0

0.05

0.1

0.15

0.2

0.25

0.3

Value Intervals

H
is

to
gr

am

Actual Error
Estimated Error

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Actual Error Quantiles

E
st

im
at

ed
 E

rr
or

 Q
ua

nt
ile

s

x=y
QQPlot Line

Fig. 13 Predicted and actual errors (means, histogram, and Q–Q Plot): big bin method

then compute the actual error metrics by scanning over
the entire sample dataset and compare the two sets of
results. Figure 12 compares the predicted and actual errors
for sector mean values, histogram and Q–Q plots, using
the index sampling (small bin) method. The two sets of
lines are either always or almost always identical, which
shows that for index sampling (small bin) method, our
error pre-calculation is able to accurately reflect actual error
results.

Figure 13 compares the predicted and actual errors for sec-
tor mean values, histogram, and Q–Q plots, now using the
index sampling (big bin) method. Here, we use the mean
value as the representative value for each big bin. In the
left figure (means), if we compare the predicted errors with
the actual errors, we can see that there are only small value
differences between the 60th sector and the 85th sector. In
most cases, these two lines are identical. In the middle fig-
ure (histogram), we can see that there is some variation.
This is because the index sampling with big bin method
represents value distributions at a relatively coarse granu-
larity. Each big bin can only be classified into one value
interval in a histogram, but each bin contains a value range
and some values may belong to the neighboring intervals. In
the right figure (Q–Q Plot), again the differences are very
small.

4.4 Efficiency comparison with different sampling methods

Earlier we have shown the benefits of sampling for improving
the execution time when datasets are remote. However, so
far we have not compared efficiency of our method against
other methods. We now report such a comparison. Since a key
feature of our approach is error pre-calculation, we focus on
a scenario where the samples must be generated so as to meet
certain accuracy requirements. Thus, the total sampling time
can be divided into two components: sample generation time
and error calculation time. Moreover, with other methods,
one may need to sample multiple times to obtain the right
accuracy levels. The variable we use here is TEMP from the
POP simulation, and the data size is 1.4 GB.

Figure 14 A compares the sample generation time among
the five sampling methods. The X axis shows different sam-
pling percentages, (3.13, 6.25, 12.5, 25 %), and the Y axis
shows the execution time in seconds. We can see that simple
random sampling takes the least time, which is not surpris-
ing. Stratified random sampling and KDTree-based sampling
have similar sample generation time, each being somewhat
slower than simple random sampling because of the time
needed for generating strata. Another difference between
stratified random sampling and KDTree-based sampling is
that the latter requires n log(n) preprocessing time, which

123

Cluster Comput

3.13% 6.25% 12.5% 25.0%
0

5

10

15

20

25

30

35

40

Sample Percentage

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

3.13% 6.25% 12.5% 25%
0

10

20

30

40

50

60

Sample Percentage

E
rr

or
 C

al
cu

la
tio

n
T

im
e(

se
c)

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

1 2 5 10
0

50

100

150

Resampling Times

T
ot

al
 T

im
e(

se
c)

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

(a) (b) (c)

Fig. 14 Time cost comparison across sampling methods (a) Sample Generation Time (b) Error Calculation Time (c) Total Time

is not included here. In our method, the random sampling
must be applied to each bitvector, which leads to higher time
cost than the other three methods. This time depends upon
the number of bins used. We can see that with the big bin
method, which has one-tenth the number of bins compared to
the small bin method, the time cost is only marginally higher
than other methods. However, the index sampling (small bin)
method has 1.19–3.98 times slowdown over KDTree-based
sampling.

Figure 14 B compares the error calculation time among
the five sampling methods. With simple random sampling,
stratified random sampling, and KDTree-based methods, we
have to take a pass over the entire sampled dataset to perform
error calculations. This is not only a high cost, but one that
also increases with the size of the sampled dataset. In compar-
ison, our method is able to pre-calculate error metrics based
on bins (quite accurately, as we established earlier) before
sampling. And the cost of performing the pre-calculation is
not related to the sample size. From the figure, we can see
that our method achieves at least 28× speedup compared with
the other three methods while creating a 25 % sample of the
dataset. Note that these results are for a 1.4 GB dataset, and
the advantage of our method will increase for larger sized
datasets.

Figure 14 C compares the overall efficiency among the five
sampling methods. The X axis shows the resampling times,
and the Y axis shows the total time cost in seconds. The sam-
pling percentage is 6.25 %. Because the first three methods
cannot support error prediction, the sample generation and
error calculation process may have to be repeated multiple
times until a satisfactory accuracy level is found. However,
using index sampling, we can perform multiple error pre-
calculations first (with different sampling levels) and then
need only one round of sample generation. If we look at the
first set of bars which correspond to the case where we sam-
ple only once, we can see that index sampling (small bin)
method has a similar total cost compared with the other three
methods, whereas the index sampling (big bin) method is

significantly faster. However, if the sampling process needs
to be repeated, both big bin and small bin methods are much
faster than any of the other methods.

4.5 Data sampling over data subsets

Another advantage of bitmap indexing is that it supports effi-
cient subsetting over subsets of the original dataset, where
these subsets may involve spatial (dimension-based) and/or
value-based conditions. In this subsection, we show how our
method is effective, i.e. data sampling efficiency improves
if sampling is performed over a subset of values or spaces.
Here we discuss value subsetting and spatial subsetting sepa-
rately, although our method is able to support a combination
of the two.

Figure 15 shows the time incurred while sampling over dif-
ferent value-based subsets. The X axis shows the subsetting
percentage, i.e. the fraction of the original dataset that meet
the conditional predicate. The Y axis shows the sampling
time, including both the index loading time and the sample
generation time. The sampling rate is 25 % in all cases, i.e.
25 % of the data records that meet the conditional predicate
are returned. From the figure, we can see that for both the
small bin and big bin methods, the efficiency improves as the
subsetting percentage decreases. Smaller value-based subset
implies not only smaller index loading time but also smaller
sample generation time. Take the index sampling (small bin)
method for example, sampling over 10 % of the data takes
6.95 times less time than sampling over 100 % of the data.

Figure 16 shows the time cost of sampling with different
spatial subsets. The X axis shows the spatial subsetting per-
centage and the Y axis shows the indices sampling time. The
sampling percentage is still 25 %. From the figure, we can
see that the time cost decreases as the spatial subsetting per-
centage decreases, though the improvement is not as obvious
as in the case of value subsetting. This is because for spa-
tial subsetting, all indices still have to be loaded, so the only
speedups are on the sample generation time.

123

Cluster Comput

100% 50% 30% 10% 1%
0

5

10

15

20

25

30

35

40

45

50

Value Subset Percentage

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Index Sampling(Small Bin)

Index Sampling(Big Bin)

Fig. 15 Sampling over value subsets

100% 50% 30% 10% 1%
0

5

10

15

20

25

30

35

40

45

50

Spatial Subset Percentage

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Index Sampling(Small Bin)

Index Sampling(Big Bin)

Fig. 16 Sampling over spatial subsets

4.6 Speedup with parallel sampling

This subsection describes how parallel indexing and sam-
pling speeds up the entire sampling process. We compared
the data sample generation time with different number of
processes for both Big Bin and Small Bin methods. The num-
ber of processes is varied from 1 to 32. The variable we used
here is TEMP with 8 time steps, and the total data size is
11.2 GB. The sampling percentage is 25 %.

Figure 17 evaluates the performance of parallel sampling
with different number of processes. In this experiment, to
emphasize the scalability of our method, we generated the
equal number of index files as processes, with each process
takes care of one index file which maps to one data block.
From the figure we can see that our method shows good
scalability as number of processes increases. Compared with
1 process, the relative speedup for Big Bin method varies
from 3.55 to 18.64, and the relative speedup for Small Bin
method varies from 3.63 to 20.38.

1 4 8 16 32
0

50

100

150

200

250

300

Number of Processes

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Index Sampling(Small Bin)
Index Sampling(Big Bin)

Fig. 17 Scalability of parallel sampling with different process number

5 Related work

Sampling of datasets has been widely studied, including work
specific to scientific datasets and/or visualization.

Traditional statistical sampling methods [12], including
simple random sampling and stratified random sampling,
have been used often. We have performed a detailed com-
parison against these methods and demonstrated how our
approach is more effective. KDTree-based sampling [47]
uses a KDTree to divide data into sub-blocks and performs
random sampling within each block. It needs to reorganize
the entire dataset, with a time complexity of O(n log(n)).
We have also compared our method with this method, and
shown that our approach outperforms this method in sev-
eral aspects, and is comparable in other ways. The Z-curve
order sampling method [35] involves a hierarchical indexing
framework that uses a Z-order curve. However, it can only be
applied to regular array-based datasets. Among the datasets
we have used, this method will not even be applicable to
the cosmology dataset. The WTSP Tree method [46] builds
a wavelet-based time-space partitioning tree over large-scale
time-varying datasets and supports multi-level data sampling
on that. The entire dataset has to be reorganized and the
WTSP Tree building process is time consuming.

Sampling has also been studied in the context of data-
bases. One area of emphasis has been online aggregation,
with initial work by Hellerstein et al. [18]. Jermaine et al. [20]
proposed an online aggregation method for the DBO engine.
Histograms [36] and wavelets [8] can be pre-computed and
used. Chaudhuri et al. [9] have conducted extensive studies
on executing approximate aggregation queries using work-
load information and biased samples. More recent work in
the database community has been in the context of speeding
up map-reduce jobs with sampling. One initial study [17]
proposed a framework to support incremental data sampling.
EARL [30] involves a new sampling strategy with support
for early error approximation based on bootstrapping, which

123

Cluster Comput

has been widely employed in statistics and can be applied to
arbitrary functions and data distributions. This method is able
to decrease the resampling times and achieve good accuracy.
However, resampling is still needed to generate a satisfying
sampling result.

Dissemination and analysis of large-scale and distributed
datasets has been the focus of other studies as well. Some of
the popular directions have been replica services [7,10], reli-
able and predictable data transfers [3,44], and constructing
workflows [1,13]. Chimera is a system for supporting virtual
data views and demand-driven data derivation [16]. Meta-
data cataloging and metadata services have also been devel-
oped [14,38]. The Metadata Catalog Service (MCS) [39] and
Artemis [43] are collaborative components used to access and
query repositories based on metadata attributes. Many mid-
dleware efforts have specifically focused on the needs of data-
driven sciences [5], and enhancing and optimizing data trans-
fer frameworks has been a popular topic [3,26,27,31,33,24].
Our sampling techniques can work in conjunction with these
efforts to make it feasible to analyze large-scale datasets.

6 Conclusions

This paper has described a novel sampling method for mas-
sive scientific simulation datasets. We utilize the value dis-
tribution and spatial locality features of bitmap indices and
have developed an accurate sampling method over multi-
level bitmap indices. We also developed an error prediction
mechanism to pre-calculate error metrics before sampling
the data. Moreover, with the help of bitmap indexing, our
method is able to support data sampling over any combina-
tion of value subset and dimension subset.

We have extensively evaluated our method with differ-
ent types of datasets and applications. First, considering two
applications, visualization and clustering, we have shown
that server-side sampling can drastically improve the effi-
ciency of analysis of remote datasets. Next, we established
that our method has much better accuracy than simple ran-
dom and stratified sampling methods, and with respect to
different metrics, either better or comparable performance
to KDTree-based sampling. Yet another result is our error
pre-calculation methodology gives very accurate estimation
of error in sampled datasets. We have also analyzed the
sample generation time with our approach, and have shown
show that when error calculation time and the possibility of
resampling to meet desired accuracy is included, our method
outperformed other approaches. Finally, we show that we
can combine our sampling method with value-based and/or
dimension-based subsetting effectively, and parallel sam-
pling can greatly improve the sampling efficiency.

Acknowledgments This work was supported by the Department of
Energy (DOE) Office of Science (OSC) Advanced Scientific Comput-

ing Research (ASCR) and NSF award IIS-0916196 to the Ohio State
University.

References

1. Abramson, D., Kommineni, J.: A flexible IO scheme for grid work-
flows. In: Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), April 2004.

2. Ahrens, J., Geveci, B., Law, C.: Paraview: an end user tool for
large data visualization. In: Hansen, C.D., Johnson, C.R. (eds.)
The Visualization Handbook. Elsevier, Burlington (2005)

3. Allcock, W.E., Foster, I., Madduri, R.: Reliable data transport: a
critical service for the grid. In: Proceedings of the Workshop on
Building Service Based Grids, 2004.

4. Antoshenkov, G.: Byte-aligned bitmap compression. In: DCC’95:
Proceedings of the Conference on Data Compression, p. 476. IEEE
(1995)

5. Baranovski, A., Beattie, K., Bharathi, S., Boverhof, J., Bresna-
han, J., Chervenak, A., Foster, I., Freeman, T., Gunter, D., Keahey,
K., Kesselman, C., Kettimuthu, R., Leroy, N., Link, M., Livny,
M., Madduri, R., Oleynik, G., Pearlman, L., Schuler, R., Tierney,
B.: Enabling petascale science: data management, troubleshooting,
and scalable science services. J. Phys.: Conf. Ser. 125, (2008)

6. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M.,
Chervenak, A., Cinquini, L., Drach, B., Foster, I., Fox, P., et al.:
The earth system grid: supporting the next generation of climate
modeling research. Proc. IEEE 93(3), 485–495 (2005)

7. Cai, M., Chervenak, A., Frank, M.: A peer-to-peer replica location
service based on a distributed hash table. In: Proceedings of SC
2004, Nov 2004

8. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approx-
imate query processing using wavelets. VLDB J. 10, 199–223
(2001)

9. Chaudhuri, S., Das, G., Datar, M., Motwani, R., Narasayya, V.:
Overcoming limitations of sampling for aggregation queries. Proc.
ICDE 1999, 534–542 (1999)

10. Chervenak, A.L., Palavalli, N., Bharathi, S., Kesselman, C.,
Schwartzkopf, R.: Performance and scalability of a replica location
service. In: Proceedings of the Conference on High Performance
Distributed Computing (HPDC), June 2004

11. Chou, J., Wu, K., Rübel, O., Prabhat, M.H.J.Q., Austin, B., Bethel,
E.W., Ryne, R.D., Shoshani, A.: Parallel index and query forlarge
scale data analysis, In: SC (2011)

12. Cochran, W.G.: Sampling Techniques. Wiley-India, New Delhi
(2007)

13. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi,
K., Lazzarini, A., Arbree, A., Cavanaugh, R., Koranda, S.: Map-
ping abstract complex workflows onto grid environments. J. Grid
Comput., 9–23 (2003)

14. Deelman, E., Singh, G., Atkinson, M.P., Chervenak, A., Chue
Hong, N.P., Kesselman, C., Patil, S., Pearlman, L., Su, M.: Grid-
based metadata services. In: Proceedings of the 16th International
Conference on Scientific and Statistical Database Management
(SSDBM04) (2004)

15. Ellsworth, D., Green, B., Moran, P.: Interactive terascale parti-
cle visualization. In: Proceedings of the conference on Visualiza-
tion’04, pp. 353–360. IEEE Computer Society (2004)

16. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data
system for representing, querying and automating data derivation.
In: Proceedings of the Conference on Scientific and Statistical Data
Management, July 2002

17. Grover, R., Carey, M.J.: Extending map-reduce for efficient
predicate-based sampling. In: IEEE 28th International Conference
on Data Engineering (ICDE), 2012, pp. 486–497. IEEE (2012)

123

Cluster Comput

18. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In:
Proceedings of SIGMOD 1997 (1997)

19. Ioannidis, Y., Poosala, V.: Histogram-based approximation of set-
valued query-answers. In: Proceedings of the International Confer-
ence on Very Large Data, Bases, pp. 174–185. (1999)

20. Jermaine, C., Arumugam, S., Pol, A., Dobra, A.: Scalable approxi-
mate query processing with the dbo engine. Proc. SIGMOD 2007,
725–736 (2007)

21. Jiang, W., Ravi, V.T., Agrawal, G.: A map-reduce system with an
alternate API for multi-core environments. In: Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pp. 84–93. IEEE Computer Society (2010)

22. Johnson, C.R., Sanderson, A.R.: A next step: visualizing errors and
uncertainty. IEEE Comput. Graph. Appl. 23(5), 6–10 (2003)

23. Jones, P.W., Worley, P.H., Yoshida, Y., White III, J.B., Levesque,
J.: Practical performance portability in the parallel ocean program
(POP). Concurr. Comput.: Pract. Exp. 17(10), 1317–1327 (2005)

24. Kettimuthu, R., Sim, A., Gunter, D., Allcock, B., Bremer, P.-T.,
Bresnahan, J., Cherry, A., Childers, L., Dart, E., Foster, I., Harms,
K., Hick, J., Lee, J., Link, M., Long, J., Miller, K., Natarajan, V.,
Pascucci, V., Raffenetti, K., Ressman, D., Williams, D., Wilson, L.,
Winkler, L.: Lessons learned from moving earth system grid data
sets over a 20 Gbps wide-area network. In: Proceedings of the 19th
ACM International Symposium on High Performance Distributed
Computing (HPDC 2010), June 2010

25. Khairoutdinov, M.F., Randall, D.A.: A cloud resolving model as
a cloud parameterization in the ncar community climate system
model: preliminary results. Geophys. Res. Lett. 28(18), 36173620
(2001)

26. Kissel, E., Martin Swany, D., Brown, A.: Improving GridFTP per-
formance using the Phoebus session layer. In: Proceedings of SC,
Nov 2009

27. Kosar, T., Livny, M.: Stork: making data placement a first class
citizen in the grid. In: Proceedings of International Conference on
Distributed Computing Systems (ICDCS) (2004)

28. LaMar, E.C., Hamann, B., Joy, K.I.: Efficient error calculation for
multiresolution texture-based volume visualization. In: Hierarchi-
cal and Geometrical Methods in Scientific Visualization. pp. 51–62.
(2003)

29. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution techniques for
interactive texture-based volume visualization. In: Proceedings of
the Conference on Visualization’99: Celebrating Ten Years, pp.
355–361. IEEE Computer Society Press (1999)

30. Laptev, N., Zeng, K., Zaniolo, C.: Early accurate results for
advanced analytics on mapreduce. Proc. VLDB Endow. 5(10),
1028–1039 (2012)

31. Liu, W., Tieman, B., Kettimuthu, R., Foster, I.: A data transfer
framework for large-scale science experiments. In: 3rd Interna-
tional Workshop on Data Intensive Distributed Computing (DIDC
2010) in conjunction with 19th International Symposium on High
Performance Distributed Computing (HPDC) 2010 (2010)

32. Lohr, S.L.: Sampling: design and analysis. Thomson (2009)
33. Lu, D., Qiao, Y., Dinda, P.A., Bustamante, F.E.: Modeling and

taming parallel TCP on wide area networks. In: Proceedings of the
12th International Parallel and Distributed Processing Symposium
(IPDPS), April 2005

34. O’Neil, P., Quass, D.: Improved query performance with variant
indexes. In ACM Sigmod Record, vol. 26, pp. 38–49. ACM (1997)

35. Pascucci, V., Frank, R.J.: Global static indexing for real-time explo-
ration of very large regular grids. In: Supercomputing, ACM/IEEE
2001 Conference, pp. 45–45. IEEE (2001)

36. Poosala, V., Ganti, V.: Fast approximate query answering using pre-
computed statistics. In: Proceedings of ICDE 1999, p. 252 (1999)

37. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved his-
tograms for selectivity estimation of range predicates. ACM SIG-
MOD Record 25(2), 294–305 (1996)

38. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman,
C., Mahohar, M., Pail, S., Pearlman L.: A metadata catalog service
for data intensive applications. In: Proceedings of Supercomputing
2003 (SC2003), Nov 2003

39. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman,
E., Manohar, M., Patil, S., Pearlman, L.: A metadata catalog service
for data intensive applications. In SC ’03: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, p. 33, Washington,
DC, USA. IEEE Computer Society (2003)

40. Su, Y., Agrawal, G.: Supporting user-defined subsetting and aggre-
gation over parallel netcdf datasets. In: 2012 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, pp.
212–219. IEEE (2012)

41. Su, Y., Agrawal, G., Woodring, J.: Indexing and parallel query
processing support for visualizing climate datasets. In: 2012
41th IEEE/ACM International Conference on Parallel Processing
(ICPP), pp. 249–258. IEEE (2012)

42. Su, Y., Agrawal, G., Woodring, J., Myers, K., Wendelberger, J.,
Ahrens, J.: Taming massive distributed datasets: data sampling
using bitmap indices. In: Proceedings of the 22nd international
symposium on High-performance parallel and distributed comput-
ing, pp. 13–24. ACM (2013)

43. Tuchinda, R., Thakkar, S., Gil, A., Deelman, E.: Artemis: integrat-
ing scientific data on the grid. In: Proceedings of the 16th Confer-
ence on Innovative Applications of Artificial Intelligence (IAAI),
pp. 25–29 (2004)

44. Vazhkudai, S., Schopf, J.: Using disk throughput data in predictions
of end-to-end grid transfers. In: Proceedings of the Third Workshop
on Grid Computing (Grid 2002), Nov 2002

45. Vitter, J.S.: An efficient algorithm for sequential random sampling.
ACM Trans. Math. Softw. (TOMS) 13(1), 58–67 (1987)

46. Wang, C., Garcia, A., Shen, H.W.: Interactive level-of-detail selec-
tion using image-based quality metric for large volume visualiza-
tion. IEEE Trans. Vis. Comput. Graph. 13(1), 122–134 (2007)

47. Woodring, J., Ahrens, J., Figg, J., Wendelberger, J., Habib, S.,
Heitmann, K.: In situ sampling of a large-scale particle simulation
for interactive visualization and analysis. In: Computer Graphics
Forum, vol. 30, pp. 1151–1160. Wiley Online Library (2011)

48. Wu, K., Otoo, E.J., Shoshani, A.: Compressing bitmap indexes for
faster search operations. In: Proceedings of the 14th International
Conference on Scientific and Statistical Database Management,
2002, pp. 99–108. IEEE (2002)

49. Wu, K., Stockinger, K., Shoshani, A.: Breaking the curse of car-
dinality on bitmap indexes. In: Scientific and Statistical Database
Management, pp. 348–365. Springer (2008)

50. Wu, K., Koegler, W., Chen, J., Shoshani, A.: Using bitmap index
for interactive exploration of large datasets. In: 15th International
Conference on Scientific and Statistical Database Management,
2003, pp. 65–74. IEEE, July 2003

51. Xu, L., Lee, T.Y., Shen, H.W.: An information-theoretic framework
for flow visualization. IEEE Trans. Vis. Comput. Graph. 16(6),
1216–1224 (2010)

123

Cluster Comput

Yu Su is a Ph.D. student in Com-
puter Science and Engineering
department of Ohio State Univer-
sity. He received his bachelor’s
degree from Nanjing University
and MS degree from Peking
University. His research inter-
ests include scientific data man-
agement and high-performance
computing. He has worked on
several research projects in this
area.

Gagan Agrawal is a profes-
sor of Computer Science and
Engineering department at Ohio
State University. He received his
bachelor’s degree from IIT Kan-
pur, and MS and Ph.D. degrees
from University of Maryland,
College Park. His research inter-
ests include parallel, distributed,
and data-intensive computing.
He has extensively published in
these areas and has been funded
by various federal awards.

Jonathan Woodring is a staff
research scientist at the Los
Alamos National Laboratory. He
received his Ph.D. from The
Ohio State University in com-
puter science. Jon is the site
PI/director for the UC Davis-
LANL Institute for Next Gen-
eration Visualization and Analy-
sis, a collaborative research insti-
tute for visualization and analy-
sis methods. His current research
interests include large-scale data
analysis and triage, statistical and
information theoretical methods

applied to analysis, uncertainty quantification, and high performance
and scientific computing.

Kary Myers is a scientist in
the Statistical Sciences Group
at Los Alamos National Labo-
ratory. She earned her Ph.D. in
statistics and her master’s degree
in machine learning at Carnegie
Mellon with support from an
AT&T Labs Fellowship. She cur-
rently serves as an associate edi-
tor for the Annals of Applied Sta-
tistics and the production editor
for Bayesian Analysis. She is a
founding officer of the Statistics
in Imaging section of the Amer-
ican Statistical Association.

Joanne Wendelberger is the
Group Leader of the Statis-
tical Sciences Group at Los
Alamos National Laboratory.
She received a B.A. in Math-
ematics and Economics from
Oberlin College and M.S. and
Ph.D. degrees in Statistics from
the University of Wisconsin-
Madison. Her current research
interests include statistical design
and analysis of experiments,
statistical bounding, uncertainty
analysis, data visualization, and
probabilistic computing. Dr. Wen-

delberger is a Fellow of the American Statistical Association.

James Ahrens graduated with
his Ph.D. in Computer Science
from the University of Washing-
ton. After graduation he joined
Los Alamos National Laboratory
as a staff member working for
the Advanced Computing Lab-
oratory (ACL). He is currently
the data science at scale lead for
the laboratory. His research inter-
ests include methods for visu-
alizing, analyzing and manag-
ing extremely large scientific
datasets.

123

	Effective and efficient data sampling using bitmap indices
	Abstract
	1 Introduction
	1.1 Existing sampling techniques, limitations, and big data needs
	1.1.1 Sampling accuracy
	1.1.2 Error calculation without high overheads
	1.1.3 Flexible data analysis over any subset
	1.1.4 Data sampling without data reorganization
	1.1.5 Multi-resolution sampling to support interactive data analysis

	1.2 Our contributions

	2 System overview
	2.1 Small preprocessing costs
	2.2 Tradeoff between accuracy and sampling/memory costs
	2.3 Combining sampling and subsetting

	3 Sampling using bitmap indices
	3.1 Background---bitmap indexing
	3.2 Stratified random sampling over bitvectors
	3.2.1 Building bitmap indices
	3.2.2 Dividing bitvectors into sectors
	3.2.3 Random sampling over each sector

	3.3 Error prediction
	3.3.1 Mean, variance, sector means, and sector variances
	3.3.2 Histogram
	3.3.3 Q--Q plot

	3.4 Sampling only a subset of data
	3.5 Data subsetting and sampling over multiple attributes
	3.6 Multi-resolution sampling to support interactive post-analysis
	3.7 Parallel indexing and sampling

	4 Experimental results
	4.1 Improving efficiency of distributed data analysis with sampling
	4.2 Accuracy comparison with different sampling methods
	4.2.1 Accuracy for visualization
	4.2.2 Accuracy for clustering

	4.3 Error prediction accuracy
	4.4 Efficiency comparison with different sampling methods
	4.5 Data sampling over data subsets
	4.6 Speedup with parallel sampling

	5 Related work
	6 Conclusions
	Acknowledgments
	References

