
Taming Massive Distributed Datasets: Data Sampling
Using Bitmap Indices

Yu Su
Computer Science and

Engineering
The Ohio State University

Columbus, OH 43210
su1@cse.ohio-state.edu

Gagan Agrawal
Computer Science and

Engineering
The Ohio State University

Columbus, OH 43210
agrawal@cse.ohio-

state.edu

Jonathan Woodring
Los Alamos National

Laboratory
Los Alamos, NM 87544
woodring@lanl.gov

Kary Myers
Los Alamos National

Laboratory
Los Alamos, NM 87544

kary@lanl.gov

Joanne Wendelberger
Los Alamos National

Laboratory
Los Alamos, NM 87544

joanne@lanl.gov

James Ahrens
Los Alamos National

Laboratory
Los Alamos, NM 87544

ahrens@lanl.gov

ABSTRACT
With growing computational capabilities of parallel machines, sci-
entific simulations are being performed at finer spatial and temporal
scales, leading to a data explosion. The growing sizes are making
it extremely hard to store, manage, disseminate, analyze, and vi-
sualize these datasets, especially as neither the memory capacity
of parallel machines, memory access speeds, nor disk bandwidths
are increasing at the same rate as the computing power. Sampling
can be an effective technique to address the above challenges, but
it is extremely important to ensure that dataset characteristics are
preserved, and the loss of accuracy is within acceptable levels.

In this paper, we address the data explosion problems by devel-
oping a novel sampling approach, and implementing it in a flexi-
ble system that supports server-side sampling and data subsetting.
We observe that to allow subsetting over scientific datasets, data
repositories are likely to use an indexing technique. Among these
techniques, we see that bitmap indexing can not only effectively
support subsetting over scientific datasets, but can also help create
samples that preserve both value and spatial distributions over sci-
entific datasets. We have developed algorithms for using bitmap
indices to sample datasets. We have also shown how only a small
amount of additional metadata stored with bitvectors can help as-
sess loss of accuracy with a particular subsampling level. Some of
the other properties of this novel approach include: 1) sampling can
be flexibly applied to a subset of the original dataset, which may
be specified using a value-based and/or a dimension-based subset-
ting predicate, and 2) no data reorganization is needed, once bit-
map indices have been generated. We have extensively evaluated
our method with different types of datasets and applications, and
demonstrated the effectiveness of our approach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$15.00.

Categories and Subject Descriptors
H.2.8 [Information Systems]: DATABASE MANAGEMENT—
Database Applications

General Terms
Performance

Keywords
big data, bitmap indexing, data sampling

1. INTRODUCTION
Many of the ‘big-data’ challenges today are arising from increas-

ing computing ability, as data collected from simulations has be-
come extremely valuable for a variety of scientific endeavors. With
growing computational capabilities of parallel machines, scientific
simulations are being performed at finer spatial and temporal sca-
les, leading to a data explosion. As a specific example, the Global
Cloud-Resolving Model (GCRM) [24] currently has a grid-cell size
of 4 km, and already produces 1 petabyte of data for a 10 day sim-
ulation. Future plans include simulations with a grid-cell size of 1
km, which will increase the data generation 64 fold.

Finer granularity of simulation data offers both an opportunity
and a challenge. On one hand, it can allow understanding of under-
lying phenomena and features in a way that would not be possible
with coarser granularity. On the other hand, larger datasets are ex-
tremely difficult to store, manage, disseminate, analyze, and visu-
alize. Neither the memory capacity of parallel machines, memory
access speeds, nor disk bandwidths are increasing at the same rate
as the computing power, contributing to the difficulty in storing,
managing, and analyzing these datasets. Simulation data is often
disseminated widely, through portals like the Earth System Grid
(ESG) [6], and downloaded by researchers all over the world. Such
dissemination efforts are hampered by dataset size growth, as wide
area data transfer bandwidths are growing at a much slower pace.
Finally, while visualizing datasets, human perception is inherently
limited relative to dataset sizes.

The above trends are leading to the following three problems:

1. Creating subsampled (lower-resolution) datasets from a high
resolution simulation dataset, on demand and efficiently, while
maintaining the characteristics of the original dataset.

13

2. Assessing the loss of quality (with respect to the key statis-
tical measures) incurred with a particular level of resolution,
on the given dataset, without having to take a pass through
the entire high resolution dataset.

3. Providing the above functionality in a flexible system, which
can support sampling at the server-side in response to re-
quests from the client-side, and combine sampling with data
subsetting.

1.1 Existing Sampling Techniques, Limitations,
and Big Data Needs

Though, to the best of our knowledge, no system provides all of
the above functionality, sampling itself has been extensively stud-
ied. Broadly, different statistical sampling methods [12, 30, 42,
44] have been proposed to find a representative subset of the entire
dataset. Some popular techniques include simple random sampling,
where we select a certain percent of elements randomly out of orig-
inal dataset, and stratified random sampling, where we first divide
the dataset into strata and then perform random sampling within
each stratum. The latter method maintains certain spatial proper-
ties of the original dataset. To compare the accuracy between the
sampled dataset and the original dataset, different error metrics [27,
43, 21] have also been used.

However, as we argue below, the existing work does not meet all
the requirements, especially in the context of growing dataset sizes
and the need for data dissemination and analysis in a distributed
environment.
Sampling Accuracy: Two factors are extremely important while
creating samples of scientific datasets so as to facilitate accurate
analysis. The first is value distribution, i.e., the value distribution
of the sampled dataset should be as close to the original dataset as
possible. The second is spatial distribution, i.e., the data accuracy
should be maintained not only for the entire dataset but also for var-
ious spatial sub-blocks. Most of the sampling methods [33, 43] de-
veloped in the context of scientific data management are focused on
the second factor, but ignore the first one. On the other hand, value
distribution based sampling is well studied and has been proven to
be a good method in the database area [18, 35]. These methods,
however, are not developed for scientific datasets, and do not even
consider spatial distribution. Consideration of both value distri-
bution and spatial locality is necessary for scientific datasets, and
unfortunately, none of the existing work has included both.
Error Calculation without High Overheads: After sampling, it is
also important to know how accurately the current sample is able
to represent the original dataset. Different error metrics, such as
mean, variance, histogram1 and Q-Q plot2 are used as diagnostics
of the accuracy. With increasing dataset sizes and the distributed
nature of analysis, there are several challenges in applying these
methods. In particular, when the goal is to find the smallest sample
that can achieve a satisfactory accuracy, the traditional sampling
process involves the following (possibly iterative) process: 1) sam-
ple generation, and 2) error metrics calculation. If the error is too
high, repeat with a larger sample, starting from step 1. The entire
process can be extremely time consuming, especially if one needs
to iterate multiple times. In particular, with the current methods,
there is no way to know in advance what may be the smallest sam-
ple size at which acceptable accuracy levels can be achieved.
Flexible Data Analysis over Any Subset: In many cases, users are
only interested in data analysis or visualization over a subset of
the data. For example, only certain timestamps may be of interest,
and/or only a particular spatial subarea needs to be analyzed. Even
if server-side subsetting is available, the resulting dataset size may

1http://en.wikipedia.org/wiki/Histogram
2http://en.wikipedia.org/wiki/Q-Q_plot

be very large. Thus, the sampling method should be such that it can
be applied to any specified subset. Unfortunately, existing sampling
methods cannot support such flexible data subset sampling.
Data Sampling without Data Reorganization: Certain sampling
methods, such as KDTree-based stratified sampling[44], have been
shown to be effective for scientific datasets. However, before sam-
pling can be performed, data reorganization is necessary. This im-
poses huge memory and disk I/O costs. Moreover, it is not possible
to maintain multiple copies of a massive dataset, and sampling is
not the only operation to be performed at server-side. After reor-
ganization, other data features that are necessary for other tasks
could be lost. Thus, we need sampling methods which operate
while maintaining the data in the original format.

1.2 Our Contributions
In this paper, we address the above limitations of existing work

by developing a novel sampling approach. We observe that to al-
low subsetting over scientific datasets, data repositories are likely
to use an indexing technique [39]. Among these techniques, we
see that bitmap indexing can not only effectively support subset-
ting over scientific datasets, but can also help create samples that
preserve both value and spatial distributions over scientific data-
sets. We have developed algorithms for using bitmap indices to
sample datasets. We have also shown how only a small amount of
additional metadata stored with bitvectors can help assess loss of
accuracy with a particular subsampling level, i.e., we do not need
to take a pass over the entire sampled dataset to calculate accu-
racy based on these metrics. Some of the other properties of this
novel approach include: 1) value distribution as well as spatial dis-
tribution of the original dataset are preserved, 2) sampling can be
flexibly applied to a subset of the dataset, which may be specified
using a value-based and/or a dimension-based subsetting predicate,
and 3) no data reorganization is needed, once bitmap indices have
been generated.

We have extensively evaluated our method with different types
of datasets and applications. First, considering two applications
- visualization and clustering, we show that server-side sampling
can drastically improve the efficiency of remote datasets analy-
sis. Next, we show that our method has much better accuracy than
simple random sampling and stratified random sampling methods,
and with respect to different metrics, either better or comparable
performance to KDTree-based sampling (which requires expensive
data reorganization). Next, we show that our error pre-calculation
methodology, a unique characteristic of our approach, gives very
accurate estimation of error in sampled datasets. We also analyze
the sample generation time with our approach, and show that when
error calculation time and possibility of resampling to meet desired
accuracy is included, our method outperforms other approaches.
Finally, we show that we can combine our sampling method with
value-based and/or dimension-based subsetting effectively.

2. SYSTEM OVERVIEW
This section gives an overview of the system we have developed

to support flexible server-side sampling of large datasets. Technical
details of the sampling method will be given in the next Section.

Figure 1 shows a high-level overview of our system. In our pre-
vious work we designed a system to support flexible data subsetting
(including both value-based and dimension-based predicates) using
a standard SQL-like interface [38, 39]. The advantage of this ap-
proach is that a simplified virtual or high-level view of the dataset
is presented to users. Thus, users downloading the data do not need
to be familiar with the details of the data format. Instead, they can
specify subsetting (and now sampling) requests with the high-level
view.

14

SQL Parser

Metadata Parser

Query Request Genenator

Data Reader

Schemas

Info

Layouts

Info

SQL

Grammar

Points ID Set

Data Result

Query Analysis Query Execution

Sample?

Error Prediction

File Names

Var Names

Bitvectors

Query

Request
Bitmap Indexing

Index Sampling

Client-Side

SQL Query

No

Yes

Figure 1: System Architecture

There are two main modules in the system, the Query Analysis
Module and Query Execution Module. The Query Analysis Module
takes an SQL query and corresponding metadata as input and gen-
erates a query request (in a specific format internal to the system)
as the output. The SQL Parser is responsible for parsing the SQL
query and generating a parse tree. We have implemented the parser
by making certain modifications to the parser from SQLite3, which
is a lightweight open-source database engine. After the parse tree
is generated, the Metadata Parser will take the data file names and
variable names as input, look up the metadata files, find the data
schema and data layout information, and load them into memory.

The second major module, Query Execution Module, takes the
query request as input, performs data subsetting and sampling based
on bitmap indices, and sends the data result back to the client. The
Bitmap Indexing performs different indexing operations based on
the query request and generates a collection of bitvectors which
satisfies the current query as output. After that, we check to see if
sampling is needed for the current query. If data sampling is not
required here, the Data Reader will query the data subset based on
the indexing information and return the result to the client. Oth-
erwise, the Data Sampling sub-module will generate data samples
based on bitmap indices.

There are two main components in the Data Sampling sub-module:
Error Prediction and Index-based Sampling. Our approach includes
a novel error prediction mechanism based on bitmap indices. With
the help of this mechanism, we are able to pre-calculate approxima-
tion errors before actually sampling the data. Moreover, the error
estimation can be performed based on indices instead of scanning
through the entire sample. While the latter also reduces the er-
ror calculation time, our pre-calculation method allows a user to
choose a sampling level which maintains a desired level of accu-
racy. Moreover, this alleviates the need for extracting a sample,
calculating the error, and then resampling (likely with a different
subsampling level), which can be very expensive in practice.

After error estimation, the Index-based Sampling component per-
forms data sampling directly over bitmap indices and generates a
set of data record identifiers as the result. Then the Data Reader
will take the data record identifiers as the input, extract the data
records, and return the results.

Besides error pre-calculation, which can improve the overall sam-
pling efficiency significantly, and the overall effectiveness of our
method, there are at least three other advantages for our system.

3http://www.sqlite.org

Small Preprocessing Costs: If the data repository already uses bit-
map indices, or will like to use bitmap indices to efficiently obtain
subsets of the original dataset, we can directly apply our sampling
method without any preprocessing. For those applications without
bitmap indexing support, the computational complexity of index
generation is only O(n log(m)) where n is the number of total ele-
ments and m is the number of bitvectors [47]. With the help of bin-
ning, m can be much smaller than n, so log(m) can be considered a
constant number. Thus, our method is much faster compared with
sampling methods with O(n log(n)) preprocessing time, such as
the KDTree-based method [44]. Another advantage of our method
is that we do not need any modifications or reorganization of the
original dataset. All sampling operations are performed using data
in the original format and the bitmap indices.
Tradeoff between Accuracy and Sampling/Memory Costs: The bit-
map indexing allows flexible multi-level indices over a given dataset.
The low-level bitmap indices are able to reflect data features at a
fine granularity, whereas the high-level indices improve the effi-
ciency by binning a group of low-level bitmap indices together. By
choosing to perform sampling using high-level or low-level bins,
and even choosing the bin size at one or both levels, one can achieve
the desired tradeoff between accuracy of sampling and time/mem-
ory costs of the sampling process.
Combining Sampling and Subsetting: Since our system is built on
top of a data subsetting system, users can combine sampling with
subsetting. Moreover, such queries can be executed efficiently be-
cause of the properties of bitmap indices.

3. SAMPLING USING BITMAP INDICES
This section first provides background on bitmap indexing and

then introduces our data sampling method using bitmap indices.
We also describe three enhancements of our sampling method, which
are error prediction, sampling over a data subset, and sampling to
support multi-attributes data analysis.

3.1 Background - Bitmap Indexing
Indexing provides an efficient way to support value-based queries

and has been extensively researched and used in the context of re-
lational databases. Bitmap indexing, which utilizes the fast bitwise
operations supported by the computer hardware, has been shown
to be an efficient approach, and has been widely used in scientific
data management [32, 47]. In particular, recent work has shown
that bitmap indexing can help support efficient querying of scien-
tific datasets stored in native formats [11, 39].

Figure 2 shows an example of a bitmap index. In this simple ex-
ample, the dataset contains a total of 8 elements with 4 distinct val-
ues. The low-level bitmap indices contain 4 bitvectors, where each
bitvector corresponds to one value. The number of bits within each
bitvector is the same as total number of elements in the dataset. In
each bitvector, a bit is set to 1 if the value for the corresponding
data element’s attribute is equal to the bitvector value, i.e. the par-
ticular distinct value for which this vector is created. The high-level
indices can be generated based on either the value intervals or value
ranges. From Figure 2, we can see two high-level indices are built
based on value intervals.

This simple example only contains integer values. Bitmap index-
ing also has been shown to be an efficient method for floating-point
values [46]. For such datasets, instead of building a bitvector for
each distinct value, we can first group a set of values together (bin-
ning) and build bitvectors for these bins. This way, the total number
of bitvectors is kept at a manageable level.

From the example we can also see that the number of bits within
each level of bitmap indices is n × m, where n is the total num-
ber of elements and m is the total number of bitvectors. This can
result in sizes even greater than the size of the original dataset,

15

ID Value e0 e1 e2 e3 i0 i1

=1 =2 =3 =4 [1, 2] [3, 4]

0 4 0 0 0 1 0 1

1 1 1 0 0 0 1 0

2 2 0 1 0 0 1 0

3 2 0 1 0 0 1 0

4 3 0 0 1 0 0 1

5 4 0 0 0 1 0 1

6 3 0 0 1 0 0 1

7 1 1 0 0 0 1 0

Dataset Low Level Indices High Level Indices

Figure 2: An Example of Bitmap Indexing

causing high time and space overheads for index creation, stor-
age, and query processing. To solve this problem, run-length com-
pression algorithms such as Byte-aligned Bitmap Code (BBC) [4]
and Word-Aligned Hybrid (WAH) [45] have been developed to re-
duce the bitmap size. The main idea of these approaches is that for
long sequences of 0s and 1s within each bitvector, an encoding is
used to count the number of continuous 0s or 1s. Such encoded
counts are stored, requiring less space. Another property of the
run-length compression methods is that it supports fast bitwise op-
erations without decompressing the data.

3.2 Stratified Random Sampling over Bitvec-
tors

Consider data storage in a large-scale scientific repository. If
we are using bitvectors to be able to retrieve subsets of the origi-
nal dataset [11, 39], the question we want to focus on is “can the
same bitvector be used to obtain accurate and representative sam-
ples, while also assessing the loss of accuracy with a particular sam-
pling level”. It turns out that bitvectors can not only be used in this
fashion, but they also provide several advantages over existing and
popularly used sampling techniques.

We now describe the bitvector based sampling method we have
developed. The basic idea in our method is to perform random
stratified sampling over each bitvector, which corresponds to a par-
ticular value or, more likely, a bin of values. Specifically, we extract
the same percent of samples out of each bitvector. By sampling
over bins with equal probability, we are able to keep value distri-
bution in the sampled dataset close to that of the original dataset.
In fact, as we will show below, this approach preserves entropy of
the original dataset, a highly desired property of samples in many
applications.

Within each bitvector, we first divide the bitvector into sectors of
a certain size, and choose the same percent of samples out of each
sector. This way, we can also preserve the value distribution within
each spatial region. Furthermore, when multi-level bitvectors are
created (such as the example earlier in Figure 2) this method can be
applied to either the low-level or the high-level index. This choice
allows a tradeoff between efficiency and accuracy.

We now explain the steps of our method in more detail, using an
example in Figure 3. There are three main steps:
Building bitmap indices: In this example, the small dataset con-
tains 32 elements, so each bitvector has 32 bits. The number of dis-
tinct values is 4. The low-level bitmap indices contain 4 bitvectors:
e0(= 1), e1(= 2), e2(= 3), e3(= 4), and the high-level bitmap
indices include 2 bitvectors: i0([1, 2]), i1([3, 4]). In this simple
example, all values are integers, though as we mentioned in Sec-
tion 3.1, bitmap indices can be (and have been) used for floating-
point values by generating bins with value ranges.
Dividing bitvectors into sectors: In order to preserve distribution
of values in each spatial region, bitmap indices should be logically

Sampling over Low Level Indices:

e0 =1 00010100 | 00110001 | 01010110 | 00010001

se0 =1 00000100 | 00100001 | 00000110 | 00010000

e1 =2 00100000 | 10000010 | 00100000 | 10000010

se1 =2 00000000 | 10000000 | 00100000 | 00000010

e2 =3 10001001 | 00000100 | 10001001 | 00100100

se2 =3 00001000 | 00000000 | 10000001 | 00100000

e3 =4 01000010 | 01001000 | 00000000 | 01001000

se3 =4 01000000 | 00001000 | 00000000 | 00001000

Sampling over High Level Indices:

i0 [1, 2] 00110100 | 10110011 | 01110110 | 10010011

si0 [1, 2] 00100100 | 10000010 | 00010100 | 10010000

i1 [3, 4] 11001011 | 01001100 | 10001001 | 01101100

si1 [3, 4] 10001001 | 00001000 | 10001000 | 01000100

Figure 3: Our Proposed Sampling Method: Stratified Random
Sampling over Bitmap Indices

divided into spatial sectors. In the figure, we can see that for both
the low-level and the high-level bitmap indices, every bitvector is
divided into 4 sectors, and there are 8 bits within each sector.
Random sampling over each sector: After creating sectors, random
sampling can be performed within each sector, and for each bitvec-
tor, to generate data samples. Within each bitvector, random sam-
pling is only applied to 1-bits. To preserve value distribution within
each region, we need to make sure sample percentages over each
sector are the same. One advantage of using bitmap indexing is that
its implementations help us locate all 1-bits efficiently. In Figure 3,
we are generating 50% samples out of the original dataset. We can
see that se0, se1, se2, se3 are identifiers of data records that are in
the sample generated using the low-level bitvectors, whereas si0,
si1 are the data records for the sample using the high-level bitvec-
tors. For both low-level and high-level bitmap indices, within each
sector, only half of the 1-bits are picked. For example, after sam-
pling, the number of 1-bits in the sample bitvector se0 is 6, which
is only half of that in original bitvector e0.

From the figure, we can also see that although low-level bitmap
indices have more bitvectors, each bitvector has fewer 1-bits. On
the other hand, the number of bitvectors in the high-level bitmap
indices is smaller, but more 1-bits exist in each bitvector. Hence,
both methods generate sampled datasets of the same size. Low-
level bitmap indexing is able to achieve better accuracy because it
reflects the value distribution at a finer granularity. However, it also
has an additional time cost, because of higher indices loading time
and bitvector striding time.

Finally, we point out the property of this method with respect
to preserving entropy. Information theory and entropy have been
extensively used while sampling data (or even selecting angles,
streamlines, or other features) in graphics and visualization, as also
summarized by Xu et al. [48].

16

e0 =1 00010100 | 00110001 | 01010110 | 00010001

count(0) count(0, 0) count(0, 1) count(0, 2) count(0, 3)

e1 =2 00100000 | 10000010 | 00100000 | 10000010

count(1) count(1, 0) count(1, 1) count(1, 2) count(1, 3)

e2 =3 10001001 | 00000100 | 10001001 | 00100100

count(2) count(0, 0) count(0, 1) count(0, 2) count(0, 3)

e3 =4 01000010 | 01001000 | 00000000 | 01001000

count(3) count(0, 0) count(0, 1) count(0, 2) count(0, 3)

c c0 c1 c2 c3
11 2 3 4 2

6 1 2 1 2

9 3 1 3 2

6 2 2 0 2

Figure 4: Metadata Generation for Error Prediction

Formally, if X is a random variable with a series of possible out-
comes x, where x ∈ {x1, x2, . . . , xn}, and if the probability for
the random variable to have the outcome xi is p(xi), then Shan-
non’s entropy is defined as

H(X) =
X

i

p(xi) × log(1/p(xi)).

Assuming no binning is performed, and sector sizes are large
enough that precisely the same fraction of values can be chosen,
we can see that the sampled dataset using bitvectors will have the
same distribution of values, or the same entropy.

3.3 Error Prediction
After sampling, it is also important to know how accurate the

sampled dataset is compared with the original dataset. Traditional
sampling methods can only calculate error metrics after samples
are generated, and if the error is too high, the entire sampling pro-
cess has to be repeated with another sample percentage. As we will
show now, with bitvectors we are able to pre-calculate error metrics
based on bins. Thus, we can perform error predictions analysis to
find a sample percentage which will give desired accuracy levels,
and then can perform data sampling only once. This is a signif-
icant advantage, since the error calculation method only takes at
most O(m) time, where m is the number of bitvectors. In compar-
ison, sample generation normally takes O(n) time, where n is the
number of data records in the original dataset, and n >> m.

As we stated earlier, while evaluating quality of a sampled dataset,
different error metrics, like mean, variance, histogram and Q-Q plot
are used. In particular, for our discussion we consider error metrics
of two types: 1) mean, variance, histogram, and Q-Q plot for each
variable, and 2) mean and variance for each sector.

We need to calculate and store some additional information dur-
ing bitmap index generation. Figure 4 shows the metadata gener-
ation over bitmap indices. For dataset or variable level error cal-
culation, the only additional information we need is the total num-
ber of 1-bits within each bitvector. From the figure, we can see
that count(0), count(1), count(2) and count(3) record the total
number of 1-bits for each bitvector. The results are stored in the
first column of the 2-dimensional count matrix c. The metadata
we need for sector-level mean and variance calculation is the num-
ber of 1-bits within each sector. From the figure, we can see that
for bitvector e0(= 1), count(0, 0), count(0, 1), count(0, 2) and
count(0, 3) record the number of 1-bits within each sector. The
result is stored in columns c0, c1, c2 and c3 of the count matrix.

Now we elaborate on calculation of specific metrics. Our ap-
proach can also be referred to as error pre-calculation, which is
in contrast to error post-calculation normally done with the tradi-
tional sampling methods.

Mean, Variance, Sector Means, and Sector Variances: We now
show how to pre-calculate mean and variance of the sampled dataset
based on bins and the count matrix. The input is the representative
value (value) of each bin, which we determined at the time of index
generation, and the total number of elements (count) within each
bin, which we can find from the count matrix. Besides that, each
time we also set a sample percentage to decide the size of the sam-
ple result, denoted as SamplePercent. Equation 1 computes the
number of samples selected from each bitvector(scounti) based on
counti and SamplePercent:

scounti = counti × SamplePercent. (1)

Our method fetches the same percent samples out of each bitvec-
tor, which is equal to SamplePercent. Hence, by multiplying
counti with SamplePercent, we are able to compute the approx-
imate number of samples within each bitvector. Now, Equation 2
calculates the mean value of the sampled dataset:

Mean =

mP

i=1
(scounti×valuei)

mP

i=1
(scounti)

. (2)

Within each bitvector, we know both the representative valuei

and sample size scounti. By multiplying these two factors to-
gether, we can get the sum value of samples in the current bitvector.
Based on that, we can calculate the total value by adding the sum
value of each bitvector together. We are also able to count the total
number of sample elements by adding scounti of each bitvector
together. Based on the sum value and total sample elements count,
we can get the mean value.

Equation 3 calculates the variance of the sampled dataset. We
first compute the value differences within each bitvector based on
mean and valuei, then add all value differences together and fi-
nally divide by the total number of sample elements:

V ariance =

mP

i=1
(scounti×(Mean−valuei)

2)
mP

i=1
(scounti)

. (3)

The method of calculating sector means and sector variances is
similar. We simply need to apply the Equations 2 and 3 for each
sector.

We can see that our approach, error pre-calculation, can calculate
mean and variance within O(m) where m is the total number of
bitvectors. Note that in contrast, the error post-calculation method
will have to scan the entire sampled dataset twice to compute the
mean and the variance. The time complexity is O(s), where s is
the sample size.
Histogram: The input is still value, count and SamplePercent.
Based on Equation 1, we can obtain the number of sampled ele-
ments for each bitvector (scounti). Now,

Probi = scounti
mP

i=1
(scounti)

. (4)

Equation 4 calculates each value Probi in the histogram by sim-
ply dividing the sample size of each bitvector scounti by the total
sample size. This way, we obtain the element probability of each
bitvector. By calculating probabilities over all bitvectors, we are
able to generate a histogram.

This method can compute the histogram within O(m), where m
is the number of bitvectors. In comparison, error post-calculation
has to first perform a Radix Sort4 over the entire sampled dataset.
After that, it needs to count the number of elements within each
bucket and then divide this number by the total sample size. The
time complexity is O(s) where s is the sample size.
4http://en.wikipedia.org/wiki/Radix_sort

17

Q-Q Plot: We first recap the definition of a Q-Q plot. Viewing the
original dataset and the sampled dataset as two distributions, we
compare them by plotting their quantiles against each other.

Algorithm 1 shows how to calculate a Q-Q plot using bitvec-
tors. The input is s , which indicates the total number of sample
elements; m, the total number of bitvectors; q, the total number
of quantiles; count, the number of elements within each bitvector;
and value, the representative value of each bitvector (calculation
described below). In line 1, we define a variable curCount to
record the total number of elements that are smaller than the value
of the current bitvector. The variable pos indicates each quantile
position identifier in the sampled dataset. It can be computed based
on total sample size(s), multiplying it with the quantile percent-
age, as shown in line 8. Lines 3 to 12 compute the quantile value
based on each quantile position. We iterate from the bitvector with
the smallest value to the bitvector with the largest value. If the
current quantile position pos is larger than curCount, we update
the curCount and go to the next bitvector, as shown in line 4 and
line 10. If pos becomes smaller than curCount, it means the cur-
rent quantile is located within the current bitvector. Then we can
record the representative value of the current bitvector as the quan-
tile value and go to the next quantile, as captured by lines 5 through
8. We keep performing this calculation until we find the value of
all the desired quantile positions.

Algorithm 1: Compute_QQPlot(s, m, q, count, value)
1: curCount ← 0, pos ← 0
2: i ← 0, j ← 0
3: while i < m&&j < q do
4: curCount ← curCount + counti
5: if curCount > pos then
6: QQPlotArrayj ← valuei
7: j ← j + 1
8: pos ← s ∗ j/100
9: else

10: i ← i + 1
11: end if
12: end while

Our method is able to calculate the Q-Q plot with O(q) in the
best case and O(q+m) in the worst case, where q is the total num-
ber of selected quantiles. In comparison, the error post-calculation
method has to first perform a quick sort over the entire sampled
dataset to calculate the Q-Q plot. After that, certain quantiles need
to be selected out of the sorted dataset as Q-Q plot values. For
example, we can fetch the data elements located at 1%, 2%, . . .
,100% positions out of the sorted sample dataset as the result. The
time complexity is O(s × log(s)) where s is the sample size.

Now, we describe how we calculate value, the representative
value of a bitvector, when we have multi-level bitmap indices. For
low-level bitmap indices, we can simply use the mean or the me-
dian value as the representative value of each bin. For high-level
bitmap indices, each bitvector indicates a relatively larger value
range. In our work, we use three indicators to predict errors for
high-level bitmap indices. In high-level bitmap indices, each bin
indicates a value range which has both a lower-bound and an upper-
bound. By using lower-bound and upper-bound values during the
error prediction process, we are able to calculate a boundary on the
actual error metric results. Besides, each high-level bin is built by
combining a group of low-level bins together. Hence, we are able
to calculate the value distribution of each high-level bin by look-
ing at corresponding low-level bins and finding an estimated value
to represent each high-level bin. This way, we are able to find the
actual error boundaries and also generate a relatively accurate error
prediction. In some cases, when the data range of the dataset is

large, the bin size of low-level bitmap indices can be big. We can
also apply this three indicators method to low-level bitmap indices.

3.4 Sampling Only a Subset of Data
When a data repository is disseminating data, a particular user

might only be interested in a certain subset of data, based on spatio-
temporal ranges (dimension subsetting) and/or specific values for
attributes (value-based subsetting). However, as the dataset size
for the subset may still be too large, sampling may still be needed.

Traditional sampling methods cannot efficiently support data sam-
pling over a user-specified subset of data that includes value-based
subsetting. For example, simple random sampling, stratified ran-
dom sampling and KDTree stratified random sampling methods can
all handle dimension-based subsetting, but when value-based sub-
setting is involved, they have to first generate data samples over the
entire dataset and then perform post-filtering, which is clearly not
efficient.

Suppose we need to sample datasets at a certain level, in conjunc-
tion with a subsetting condition, which includes both dimension-
based and value-based subsetting conditions. We will proceed as
follows. We first focus on the value subsetting conditions and
search the (possibly) multi-level bitmap indices to find correspond-
ing bitvectors. Only these bitvectors need to be loaded. Next we
perform dimension subsetting over the retrieved bitvectors. Finally,
we apply the stratified sampling only over this bitset.

3.5 Data Subsetting and Sampling over Mul-
tiple Attributes

In a typical scientific dataset, certain attributes can be stand-
alone, i.e., can be analyzed separately. On the other hand, certain
attributes can be closely connected with each other, and it is better
to study them together. Suppose we consider the output from the
cosmology data described in Section 4 below. Each record in the
dataset corresponds to one particle and includes multiple attributes.
For example, the attribute mass indicates the field value related to
the current particle, and VX, VY, VZ indicate the particle veloc-
ity in each of the three spatial dimensions. mass can be analyzed
separately, as it does not have a strong connection with the other
attributes. For VX, VY, VZ, however, scientists prefer to analyze
them together to find the relationships among them.

The techniques we have described so far build indices over each
attribute separately, which does not fit the second scenario very
well. We now describe an extension to support sampling to ensure
a preserved distribution over multiple attributes.

Suppose we need to sample with respect to two attributes, X
and Y . The entire process can be divided into 3 steps: (1) Divide
the value range of each attribute into one-attribute bins, say, (X1,
X2, . . . ,Xm1) and (Y1, Y2, . . . ,Ym2). (2) Form multiple attributes
bins (or mbins) (X1, Y1), (X1, Y2), . . . ,(Xm1, Ym2) based on the
one-attribute bins generated in the previous step. For each mbin,
generate a bitvector and initially set all bits to 0. (3) Scan through
the dataset. For each record, find its X and Y value, classify it into
the corresponding mbin and set the corresponding bit to 1. Repeat
this process until all records are mapped to related mbins.

4. EXPERIMENTAL RESULTS
In this section, we report results from a number of experiments

conducted to evaluate our sampling approach. We designed ex-
periments with the following goals: (1) To show how data sam-
pling is able to improve data analysis efficiency in a distributed
environment (where data source and resources for data analysis are
geographically separated), (2) To examine the accuracy of our bit-
map indices sampling method and compare it with a number of
other sampling methods, (3) To evaluate the accuracy of error pre-
calculation, by comparing predicted errors with the actual errors,

18

100% 12.5% 1% 0.1%
0

200

400

600

800

1000

1200

1400

Sample Percentage

E
xe

cu
tio

n
T

im
e(

se
c)

Data Sample Time
Data Transfer Time(10 MB)
Data Transfer Time(100 MB)
Data Visualization Time

Figure 5: Visualizing a Remote Dataset: Execution Time with
and without Sampling

100% 12.5% 1% 0.1%
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Sample Percentage

E
xe

cu
tio

n
T

im
e(

se
c)

Data Sample Time
Data Transfer Time(10 MB)
Data Transfer Time(100 MB)
K−means Execution Time

Figure 6: Clustering a Remote Dataset: Execution Time with
and without sampling

(4) To compare the efficiency of our method against other sampling
methods, in particular in view of error pre-calculation, and (5) To
show how sampling over data subsets improves the efficiency.

We used two different scientific datasets. The ocean dataset is
generated by the Parallel Ocean Program (POP) [22], which is an
ocean circulation model. The execution we used has a grid resolu-
tion of approximately 10 km (horizontally), and vertically it has a
grid spacing close to 10 m near the surface, increasing up to 250 m
in the deep ocean. POP generates 1.4 GB output for each variable
per time-slice, and each variable is modeled with three dimensions:
longitude, latitude, and depth. The data is stored in the NetCDF
format. The cosmology dataset is generated by the Road-Runner
Universe MC3, which is a large N-body cosmology simulation of
dark matter physics. An MC3 time step of 40003 (64 billion) par-
ticles with 36 bytes per particle takes 2.3 TB per time-slice. The
particles generated per time-slice are split into a collection of data
files based on the spatial information. Each particle within the file
corresponds to one record, which is formed by 8 attributes (X, Y,
Z, VX, VY, VZ, MASS, TAG). The data is stored in binary format.

In our experiments, the data repository and the server-side data
sampling are on the Darwin Cluster at Los Alamos National Labo-
ratory. Darwin consists of 120 compute nodes with 48 core(12-core
by 4 socket) 2GHz AMD Opteron 6168 and 64 GB memory. The
client-side data analysis is performed on one compute node which
has 8 cores Intel(R) Xeon(R) CPU 2.53GHz and 32 GB memory.

4.1 Improving Efficiency of Distributed Data
Analysis with Sampling

In this experiment, we consider the following scenario. The en-
tire dataset is located on a remote server, and any analysis must be

done after the data is downloaded to the client-side. We consider
two distinct applications: data visualization and data mining. In the
data visualization scenario, we visualize the sampled dataset using
Paraview [2], a widely used data analysis and visualization applica-
tion. In the data mining scenario, we take data samples as input and
perform K-means clustering using MATE [20], a map-reduce like
system. With these two applications, we compare the efficiency of
data analysis (including data downloading time), when using the
original dataset against the cases where different subsampling lev-
els are used. In particular, we divide the data processing time into
three parts: 1) Server-side data sampling time, 2) Data transfer time
between the server and the client, and 3) Client-side data analysis
time. The second factor above varies with the wide-area data trans-
fer bandwidths one might have. For our experiments, we used two
different networks, one with 10 MB/s bandwidth and the other with
100 MB/s bandwidth.

Figure 5 compares the efficiency of the data visualization using
different subsampling levels: 100%, which means that we are us-
ing the original dataset without sampling, 12.5%, 1%, and 0.1%.
The dataset without sampling is 11.2 GB in size and is from the
POP application. From the figure, we can see that although our
method incurs extra sampling costs compared to the case when the
original dataset is analyzed, both the data transfer and analysis time
is much lower, and more than compensates for the sampling time.
Specifically, we find that compared to visualization over the orig-
inal dataset, if network bandwidth is 10 MB/s, the speedup with
12.5% sampling rate, 1% sampling rate, and 0.1% sampling rate is
4.82, 15.91, and 47.59, respectively. If network bandwidth is 100
MB/s, the corresponding speedups are 2.61, 6.72, and 19.02, re-
spectively. Another consideration with sampling is the accuracy of
the analysis, which we will focus on in the next subsection.

Figure 6 compares the efficiency of K-means clustering (data
mining) execution, using the original dataset and the three sam-
pling levels (12.5%, 1%, and 0.1%). The dataset is from cosmol-
ogy, and is 16 GB in size. The number of K-means cluster centers
is 10 and the number of iterations is 50. The number of threads is
4. From the figure, we can see that, similar to data visualization,
with the help of sampling, the speedup with 10 MB/s network band-
width ranges from 5.25 to 84.24, and the speedup with 100 MB/s
network bandwidth ranges from 3.26 to 39.8. Again, accuracy is
another consideration, which we will analyze next.

4.2 Accuracy Comparison with Different Sam-
pling Methods

As we stated above, besides efficiency, accuracy is a very impor-
tant consideration for a sampling method. Using visualization and
clustering as representative data analysis applications, we not only
evaluate the absolute accuracy of our method, but also compare the
accuracy against three other methods.

The sampling methods we compare against are as follows. Sim-
ple random sampling involves randomly selecting a data subset out
of the original dataset without focusing on any features. Stratified
random sampling [12] performs random sampling within each stra-
tum. Normally, the way these strata are formed can preserve spatial
distribution of samples, but not the value distribution. KDTree-
based sampling [44] has been proven to be a good method for vi-
sualization, and has also been applied to the cosmology dataset. It
divides data into strata by building a k-dimensional tree over the
dataset. The tree construction method is primarily based on spatial
dimension(s) but can also consider data values as one dimension.
Random sampling is performed within each stratum to generate a
data sample. Because both data values and spatial distribution are
considered in forming the strata, KDTree-based sampling has led
to better accuracy than stratified random sampling.

19

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Mean Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Histogram Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Q−Q Plot Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

Figure 7: Error (Means, Histogram, and Q-Q Plot) Comparison Using Cumulative Frequency Plots: TEMP from POP Dataset

0 6 12 18 24 30 36 42 48 54 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Mean Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Histogram Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Q−Q Plot Value Differences Range

E
le

m
en

t P
er

ce
nt

ag
e

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

Figure 8: Error (Means, Histogram, and Q-Q Plot) Comparison Using Cumulative Frequency Plots: VX from Cosmology Dataset

In our method, which we will refer to as index sampling, we
chose two bitmap indexing levels. The method we will denote as
small bin corresponds to the use of low-level bitmap indices, which
indicates fine-grained value distribution. The method we will de-
note as big bin corresponds to the use of high-level bitmap indices.
Here, we groups 10 small bins into a big bin, and thus, value dis-
tributions are preserved only at a coarser level. The datasets and
the variables used here are the same as the previous experiment:
TEMP from the POP dataset and (VX, VY, VZ) from the cosmology
dataset. The sample percentage is 0.1% of the original dataset.

It turns out that the appropriate error metrics for visualization
and clustering are very distinct. Now we discuss the accuracy of
the two applications separately.

4.2.1 Accuracy for Visualization
Characterizing the impact of sampling on visualization is hard,

since human perception plays a role in how a dataset is viewed.
Based on the existing literature from visualization [44], we used
the following metrics: means of the value over 200 separate sec-
tors, histogram using 200 value intervals, and Q-Q plot with 200
quantiles. To make the results more obvious, we calculated the
sector means, histogram, and Q-Q plot value of both the original
dataset and each sample dataset, and computed the absolute value
differences between the original dataset and the sample dataset. To
represent these charts, we use a Cumulative Frequency Plot(CFP).
In our plots (Figure 7 for example), a point (x, y) indicates that the
fraction y of all calculated absolute value differences are less than
x. Since the error metric value differences should be as small as
possible, it implies that a method with the curve to the left has a
better accuracy than the method with the curve to the right. For
the bitmap index sampling method, the total number of small bins

of TEMP is 442, and the total number of small bins of VX is 670.
Each 10 small bins are grouped into a big bin.

The left subfigures of Figures 7 and 8 show the absolute value
differences of sector means using the five sampling methods (in-
cluding two versions of our approach). The simple random sam-
pling shows the worst accuracy. The stratified random sampling,
which considers spatial distribution, achieves better accuracy than
simple random sampling. However, as it does not consider value
distribution, the results are still worse than KDTree-based sampling
and index sampling. If we compare KDTree-based sampling with
index sampling, we can see that for POP data, index sampling(both
small bin and big bin) achieves better accuracy than KDTree-based
sampling. For cosmology data, KDTree-based sampling shows bet-
ter accuracy than index sampling(big bin). However, index sam-
pling(small bin) method still achieves the best accuracy.

The middle subfigures of Figures 7 and 8 show the absolute
value differences for histogram entries, comparing the five sam-
pling methods. KDTree-based sampling considers value distribu-
tion by treating variable value as one dimension during the KDTree
sorting process. This method is more focused on spatial partitions
and only considers value distribution at a very coarse level. Thus,
as we can also see from the figures, for the cosmology dataset, the
histogram results with KDTree-based sampling are not as good as
our method. For the POP dataset, KDTree-based sampling and in-
dex sampling with big bin achieve a similar accuracy. Index sam-
pling with small bin achieves a better accuracy than all the other
methods.

The right subfigures of Figures 7 and 8 show the absolute value
differences of Q-Q plot values among the five sampling methods. If
we compare KDTree-based sampling with index sampling, we can
see that for the POP dataset, KDTree-based sampling achieves the

20

25% 12.5% 1% 0.1%
0

20

40

60

80

100

120

Sample Percentage

A
bs

ol
ut

e
C

lu
st

er
 C

en
te

r
V

al
ue

 D
iff

er
en

ce
s

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Multi−Bin)

Figure 9: K-means: Accuracy Differences with Different Sam-
pling Levels and Sampling Methods

best accuracy, but for the cosmology dataset, index sampling(both
small bin and big bin) shows better accuracy. On the whole, the
Q-Q plot value differences between KDTree-based sampling and
index sampling are small.

4.2.2 Accuracy for Clustering
The error metric here is the difference between cluster centers,

using the original and the sampled dataset. Specifically, we first cal-
culate cluster center values for the original dataset, then calculate
cluster center values for the sampled dataset, and finally compute
the Euclidean distance between cluster centers in the the original
dataset and the sampled dataset. The dataset we used here is the
cosmology data and the indices are built over the three attributes
VX, VY and VZ, i.e., the multiple attribute sampling method sum-
marized in Section 3.5 is used here. The total number of multiple
bins for VX, VY, VZ is 2000.

Figure 9 shows the accuracy using four sampling methods. The
X axis shows different sampling percentages (25%, 12.5%, 1%,
0.1%), and Y axis shows the average cluster center value differ-
ences. KDTree-based sampling considers sorting based on spatial
information first and then values. In this case, this method sorts
the data based on X, Y, Z and then VX, VY and VZ. It achieves bet-
ter accuracy compared with simple random sampling and stratified
random sampling. Indices sampling, which considers binning over
VX, VY and VZ first and then spatial locality, achieves better accu-
racy than all the other methods. As sampling percentage decreases,
the advantage of our method becomes even more prominent.

To summarize our discussion, we can observe the following.
Traditional methods from statistics, i.e., simple random and strati-
fied random sampling, cannot get accurate samples as they are not
considering enough features of the data. KDTree-based sampling,
which is more focused on spatial locality, achieves good accuracy
on sector means and Q-Q plots. However, the histogram result is
not as good as for bitmap index sampling. Our method, which con-
siders the value distribution first and then spatial locality, is able to
generate a better histogram, while at the same time achieving good
accuracy for sector means and Q-Q plots compared to KDTree-
based sampling. It also achieves a better result than all the other
methods when multiple attributes need to be considered while sam-
pling. Furthermore, our method allows flexibility in choosing bin
levels, and thus, users can adjust the bin size and level to get the de-
sired tradeoff between accuracy and efficiency. Finally, as we will
elaborate later, another advantage of our method lies in its ability
to pre-calculate error levels.

4.3 Error Prediction Accuracy
As we have stated throughout, an important and distinct feature

of our approach is the ability to pre-calculate error levels. However,

we need to verify if the predicted error results are close to the actual
error results. We now describe results from an experiment designed
for this purpose using the POP dataset. The sampling percentage is
0.1%.

In this experiment, we first calculate predicted error metrics with
the methods described earlier in Section 3.3, then compute the ac-
tual error metrics by scanning over the entire sample dataset and
compare the two sets of results. Figure 10 compares the predicted
and actual errors for sector mean values, histogram and Q-Q plots,
using the index sampling(small bin) method. The two sets of lines
are either always or almost always identical, which shows that for
index sampling(small bin) method, our error pre-calculation is able
to accurately reflect actual error results.

Figure 11 compares the predicted and actual errors for sector
mean values, histogram, and Q-Q plots, now using the index sam-
pling(big bin) method. Here, we use the mean value as the repre-
sentative value for each big bin. In the left figure (means), if we
compare the predicted errors with the actual errors, we can see that
there are only small value differences between the 60th sector and
the 85th sector. In most cases, these two lines are identical. In the
middle figure (histogram), we can see that there is some variation.
This is because the index sampling with big bin method represents
value distributions at a relatively coarse granularity. Each big bin
can only be classified into one value interval in a histogram, but
each bin contains a value range and some values may belong to
the neighboring intervals. In the right figure (Q-Q Plot), again the
differences are very small.

4.4 Efficiency Comparison with Different Sam-
pling Methods

Earlier we have shown the benefits of sampling for improving
the execution time when datasets are remote. However, so far we
have not compared efficiency of our method against other meth-
ods. We now report such a comparison. Since a key feature of
our approach is error pre-calculation, we focus on a scenario where
the samples must be generated so as to meet certain accuracy re-
quirements. Thus, the total sampling time can be divided into two
components: sample generation time and error calculation time.
Moreover, with other methods, one may need to sample multiple
times to obtain the right accuracy levels. The variable we use here
is TEMP from the POP simulation, and the data size is 1.4 GB.

Figure 12(a) compares the sample generation time among the
five sampling methods. The X axis shows different sampling per-
centages, (3.13%, 6.25%, 12.5%, 25%), and the Y axis shows the
execution time in seconds. We can see that simple random sam-
pling takes the least time, which is not surprising. Stratified ran-
dom sampling and KDTree-based sampling have similar sample
generation time, each being somewhat slower than simple random
sampling because of the time needed for generating strata. Another
difference between stratified random sampling and KDTree-based
sampling is that the latter requires n log(n) preprocessing time,
which is not included here. In our method, the random sampling
must be applied to each bitvector, which leads to higher time cost
than the other three methods. This time depends upon the number
of bins used. We can see that with the big bin method, which has
one-tenth the number of bins compared to the small bin method,
the time cost is only marginally higher than other methods. How-
ever, the index sampling(small bin) method has 1.19 to 3.98 times
slowdown over KDTree-based sampling.

Figure 12(b) compares the error calculation time among the five
sampling methods. With simple random sampling, stratified ran-
dom sampling, and KDTree-based methods, we have to take a pass
over the entire sampled dataset to perform error calculations. This
is not only a high cost, but one that also increases with the size
of the sampled dataset. In comparison, our method is able to pre-

21

0 72576000 145152000 217728000 290304000 362879999
−5

0

5

10

15

20

25

Spatial Strides

M
ea

n
V

al
ue

s

Actual Error
Estimated Error

−21.19 −15.69 −10.19 −4.69 0.81 6.31 11.81 17.31 22.81 28.31 33.11
0

0.05

0.1

0.15

0.2

0.25

0.3

Value Intervals

H
is

to
gr

am

Actual Error
Estimated Error

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Actual Error Quantiles

E
st

im
at

ed
 E

rr
or

 Q
ua

nt
ile

s

x=y
QQPlot Line

Figure 10: Predicted and Actual Errors (Means, Histogram, and Q-QPlot): Small Bin Method

0 72576000 145152000 217728000 290304000 362879999
−5

0

5

10

15

20

25

Spatial Strides

M
ea

n
V

al
ue

s

Actual Error
Estimated Error

−21.19 −15.69 −10.19 −4.69 0.81 6.31 11.81 19.31 22.81 28.31 33.11
0

0.05

0.1

0.15

0.2

0.25

0.3

Value Intervals

H
is

to
gr

am

Actual Error
Estimated Error

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Actual Error Quantiles

E
st

im
at

ed
 E

rr
or

 Q
ua

nt
ile

s

x=y
QQPlot Line

Figure 11: Predicted and Actual Errors (Means, Histogram, and Q-QPlot): Big Bin Method

3.13% 6.25% 12.5% 25.0%
0

5

10

15

20

25

30

35

40

Sample Percentage

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

(a) Sample Generation Time

3.13% 6.25% 12.5% 25%
0

10

20

30

40

50

60

Sample Percentage

E
rr

or
 C

al
cu

la
tio

n
T

im
e(

se
c)

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

(b) Error Calculation Time

1 2 5 10
0

50

100

150

Resampling Times

T
ot

al
 T

im
e(

se
c)

Simple Random Sampling
Stratified Random Sampling
KDTree−based Sampling
Index Sampling(Big Bin)
Index Sampling(Small Bin)

(c) Total Time

Figure 12: Time Cost Comparison across Sampling Methods

calculate error metrics based on bins(quite accurately, as we es-
tablished earlier) before sampling. And the cost of performing the
pre-calculation is not related to the sample size. From the figure,
we can see that our method achieves at least 28x speedup com-
pared with the other three methods while creating a 25% sample of
the dataset. Note that these results are for a 1.4 GB dataset, and the
advantage of our method will increase for larger sized datasets.

Figure 12(c) compares the overall efficiency among the five sam-
pling methods. The X axis shows the resampling times, and the Y
axis shows the total time cost in seconds. The sampling percent-
age is 6.25%. Because the first three methods cannot support er-
ror prediction, the sample generation and error calculation process
may have to be repeated multiple times until a satisfactory accuracy

level is found. However, using index sampling, we can perform
multiple error pre-calculations first (with different sampling levels)
and then need only one round of sample generation. If we look at
the first set of bars which correspond to the case where we sample
only once, we can see that index sampling(small bin) method has a
similar total cost compared with the other three methods, whereas
the index sampling(big bin) method is significantly faster. How-
ever, if the sampling process needs to be repeated, both big bin and
small bin methods are much faster than any of the other methods.

4.5 Data Sampling over Data Subsets
Another advantage of bitmap indexing is that it supports efficient

subsetting over subsets of the original dataset, where these subsets

22

100% 50% 30% 10% 1%
0

5

10

15

20

25

30

35

40

45

50

Value Subset Percentage

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Index Sampling(Small Bin)

Index Sampling(Big Bin)

Figure 13: Sampling over Value Subsets

100% 50% 30% 10% 1%
0

5

10

15

20

25

30

35

40

45

50

Spatial Subset Percentage

S
am

pl
e

G
en

er
at

io
n

T
im

e(
se

c)

Index Sampling(Small Bin)

Index Sampling(Big Bin)

Figure 14: Sampling over Spatial Subsets

may involve spatial (dimension-based) and/or value-based condi-
tions. In this subsection, we show how our method is effective, i.e.
data sampling efficiency improves if sampling is performed over
a subset of values or spaces. Here we discuss value subsetting and
spatial subsetting separately, although our method is able to support
a combination of the two.

Figure 13 shows the time incurred while sampling over differ-
ent value-based subsets. The X axis shows the subsetting percent-
age, i.e. the fraction of the original dataset that meet the con-
ditional predicate. The Y axis shows the sampling time, which
includes both the index loading time and the sample generation
time. The sampling rate is 25% in all cases, i.e. 25% of the data
records that meet the conditional predicate are returned. From the
figure, we can see that for both the small bin and big bin meth-
ods, the efficiency improves as the subsetting percentage decreases.
Smaller value-based subset implies not only smaller index loading
time but also smaller sample generation time. Take the index sam-
pling(small bin) method for example, sampling over 10% of the
data takes 6.95 times less time than sampling over 100% of the
data.

Figure 14 shows the time cost of sampling with different spatial
subsets. The X axis shows the spatial subsetting percentage and the
Y axis shows the indices sampling time. The sampling percentage
is still 25%. From the figure, we can see that the time cost decreases
as the spatial subsetting percentage decreases, though the improve-
ment is not as obvious as in the case of value subsetting. This is
because for spatial subsetting, all indices still have to be loaded, so
the only speedups are on the sample generation time.

5. RELATED WORK
Sampling of datasets has been widely studied, including work

specific to scientific datasets and/or visualization.

Traditional statistical sampling methods [12], including simple
random sampling and stratified random sampling, have been used
often. We have performed a detailed comparison against these
methods and demonstrated how our approach is more effective.
KDTree-based sampling [44] uses a KDTree to divide data into
sub-blocks and performs random sampling within each block. It
needs to reorganize the entire dataset, with a time complexity of
O(n log(n)). We have also compared our method with this method,
and shown that our approach outperforms this method in several
aspects, and is comparable in other ways. The Z-curve order sam-
pling method [33] involves a hierarchical indexing framework that
uses a Z-order curve. However, it can only be applied to regu-
lar array-based datasets. Among the datasets we have used, this
method will not even be applicable to the cosmology dataset. The
WTSP Tree method [43] builds a wavelet-based time-space par-
titioning tree over large-scale time-varying datasets and supports
multi-level data sampling on that. The entire dataset has to be reor-
ganized and the WTSP Tree building process is time consuming.

Sampling has also been studied in the context of databases. One
area of emphasis has been online aggregation, with initial work
by Hellerstein et al [17]. Jermaine et al [19] proposed an online
aggregation method for the DBO engine. Histograms [34] and
wavelets [8] can be pre-computed and used. Chaudhuri et al [9]
have conducted extensive studies on executing approximate ag-
gregation queries using workload information and biased samples.
More recent work in the database community has been in the con-
text of speeding up map-reduce jobs with sampling. One initial
study [16] proposed a framework to support incremental data sam-
pling. EARL [28] involves a new sampling strategy with support
for early error approximation based on bootstrapping, which has
been widely employed in statistics and can be applied to arbitrary
functions and data distributions. This method is able to decrease the
resampling times and achieve good efficiency and accuracy. How-
ever, resampling is still needed to generate a satisfying sampling
result.

Dissemination and analysis of large-scale and distributed data-
sets has been the focus of other studies as well. Some of the pop-
ular directions have been replica services [7, 10], reliable and pre-
dictable data transfers [3, 41], and constructing workflows [1, 13].
Chimera is a system for supporting virtual data views and demand-
driven data derivation [15]. Metadata cataloging and metadata ser-
vices have also been developed [14, 36]. The Metadata Catalog
Service (MCS) [37] and Artemis [40] are collaborative components
used to access and query repositories based on metadata attributes.
Many middleware efforts have specifically focused on the needs of
data-driven sciences [5], and enhancing and optimizing data trans-
fer frameworks has been a popular topic [3, 25, 26, 29, 31, 23]. Our
sampling techniques can work in conjunction with these efforts to
make it feasible to analyze large-scale datasets.

6. CONCLUSIONS
This paper has described a novel sampling method for massive

scientific simulation datasets. We utilize the value distribution and
spatial locality features of bitmap indices and have developed an
accurate sampling method over multi-level bitmap indices. We
also developed an error prediction mechanism to pre-calculate er-
ror metrics before sampling the data. Moreover, with the help of
bitmap indexing, our method is able to support data sampling over
any combination of value subset and dimension subset.

7. ACKNOWLEDGMENTS
This work was supported by the Department of Energy (DOE)

Office of Science (OSC) Advanced Scientific Computing Research
(ASCR) and NSF award IIS-0916196 to the Ohio State University.

23

8. REFERENCES
[1] David Abramson and Jagan Kommineni. A Flexible IO Scheme for Grid

Workflows . In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), April 2004.

[2] James Ahrens, Berk Geveci, and Charles Law. Paraview: An end user tool for
large data visualization. the Visualization Handbook. Edited by CD Hansen and
CR Johnson. Elsevier, 2005.

[3] W. E. Allcock, I. Foster, and R. Madduri. Reliable Data Transport: A Critical
Service for the Grid. In Proceedings of the Workshop on Building Service Based
Grids, 2004.

[4] G. Antoshenkov. Byte-aligned bitmap compression. In Data Compression
Conference, 1995. DCC’95. Proceedings, page 476. IEEE, 1995.

[5] Andrew Baranovski, Keith Beattie, Shishir Bharathi, Joshua Boverhof, John
Bresnahan, Ann Chervenak, Ian Foster, Tim Freeman, Dan Gunter, Kate
Keahey, Carl Kesselman, Rajkumar Kettimuthu, Nick Leroy, Michael Link,
Miron Livny, Ravi Madduri, Gene Oleynik, Laura Pearlman, Robert Schuler,
and Brian Tierney. Enabling petascale science: Data management,
troubleshooting, and scalable science services. Journal of Physics: Conference
Series, 125, 2008.

[6] D. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A. Chervenak,
L. Cinquini, B. Drach, I. Foster, P. Fox, et al. The earth system grid: Supporting
the next generation of climate modeling research. Proceedings of the IEEE,
93(3):485–495, 2005.

[7] M. Cai, A. Chervenak, and M. Frank. A Peer-to-Peer Replica Location Service
Based on A Distributed Hash Table. In Proceedings of SC 2004, November
2004.

[8] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
Approximate query processing using wavelets. VLDB Journal, 10:199–223,
2001.

[9] Surajit Chaudhuri, Gautam Das, Mayur Datar, Rajeev Motwani, and Vivek
Narasayya. Overcoming limitations of sampling for aggregation queries. In
Proceedings of ICDE 1999, pages 534–542, 1999.

[10] A.L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and R. Schwartzkopf.
Performance and Scalability of a Replica Location Service. In Proceedings of
the Conference on High Performance Distributed Computing (HPDC), June
2004.

[11] J. Chou, K. Wu, O. Rübel, M.H.J.Q. Prabhat, B. Austin, E.W. Bethel, R.D.
Ryne, and A. Shoshani. Parallel index and query for large scale data analysis. In
SC, 2011.

[12] W.G. Cochran. Sampling techniques. Wiley-India, 2007.
[13] Ewa Deelman, Jim Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,

Karan Vahi, Albert Lazzarini, Adam Arbree, Richard Cavanaugh, and Scott
Koranda. Mapping Abstract Complex Workflows onto Grid Environments. In
Journal of Grid Computing, pages 9–23, 2003.

[14] Ewa Deelman, G. Singh, M.P. Atkinson, A. Chervenak, N.P. Chue Hong,
C. Kesselman, S. Patil, L. Pearlman, and M. Su. Grid-Based Metadata Services.
In Proceedings of the 16th International Conference on Scientific and
Statistical Database Management (SSDBM04), 2004.

[15] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data System
for Representing, Querying and Automating Data Derivation. In Proceedings of
the Conference on Scientific and Statistical Data Management, July 2002.

[16] R. Grover and M.J. Carey. Extending map-reduce for efficient predicate-based
sampling. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 486–497. IEEE, 2012.

[17] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In
Proceedings of SIGMOD 1997, 1997.

[18] Y. Ioannidis and V. Poosala. Histogram-based approximation of set-valued
query-answers. In Proceedings of the International Conference on Very Large
Data Bases, pages 174–185, 1999.

[19] Christopher Jermaine, Subramaniam Arumugam, Abhijit Pol, and Alin Dobra.
Scalable approximate query processing with the dbo engine. In Proceedings of
SIGMOD 2007, pages 725–736, 2007.

[20] W. Jiang, V.T. Ravi, and G. Agrawal. A map-reduce system with an alternate
api for multi-core environments. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 84–93.
IEEE Computer Society, 2010.

[21] C.R. Johnson and A.R. Sanderson. A next step: Visualizing errors and
uncertainty. Computer Graphics and Applications, IEEE, 23(5):6–10, 2003.

[22] PW Jones, PH Worley, Y. Yoshida, JB White III, and J. Levesque. Practical
performance portability in the parallel ocean program (pop). Concurrency and
Computation: Practice and Experience, 17(10):1317–1327, 2005.

[23] Rajkumar Kettimuthu, Alex Sim, Dan Gunter, Bill Allcock, Peer-Timo Bremer,
John Bresnahan, Andrew Cherry, Lisa Childers, Eli Dart, Ian Foster, Kevin
Harms, Jason Hick, Jason Lee, Michael Link, Jeff Long, Keith Miller, Vijaya
Natarajan, Valerio Pascucci, Ken Raffenetti, David Ressman, Dean Williams,
Loren Wilson, and Linda Winkler. Lessons learned from moving earth system
grid data sets over a 20 gbps wide-area network. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing
(HPDC 2010), Jun 2010.

[24] M.F. Khairoutdinov and D.A. Randall. A cloud resolving model as a cloud
parameterization in the ncar community climate system model: Preliminary
results. Geophys. Res. Lett, 28(18):36173620, 2001.

[25] Ezra Kissel, D. Martin Swany, and Aaron Brown. Improving GridFTP
performance using the Phoebus session layer. In Proceedings of SC, November
2009.

[26] T. Kosar and M. Livny. Stork: Making Data Placement a First Class Citizen in
the Grid. In Proceedings of International Conference on Distributed Computing
Systems (ICDCS), 2004.

[27] E.C. LaMar, B. Hamann, and K.I. Joy. Efficient error calculation for
multiresolution texture-based volume visualization. Hierachical and
Geometrical Methods in Scientific Visualization, pages 51–62, 2003.

[28] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced
analytics on mapreduce. Proceedings of the VLDB Endowment,
5(10):1028–1039, 2012.

[29] Wantao Liu, Brian Tieman, Rajkumar Kettimuthu, and Ian Foster. A data
transfer framework for large-scale science experiments. In 3rd International
Workshop on Data Intensive Distributed Computing (DIDC 2010) in
conjunction with 19th International Symposium on High Performance
Distributed Computing (HPDC 2010, 2010.

[30] S.L. Lohr. Sampling: design and analysis. Thomson, 2009.
[31] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Modeling and Taming

Parallel TCP on Wide Area Networks. In Proceedings of the 12th International
Parallel and Distributed Processing Symposium (IPDPS), April 2005.

[32] P. O’Neil and D. Quass. Improved query performance with variant indexes. In
ACM Sigmod Record, volume 26, pages 38–49. ACM, 1997.

[33] V. Pascucci and R.J. Frank. Global static indexing for real-time exploration of
very large regular grids. In Supercomputing, ACM/IEEE 2001 Conference,
pages 45–45. IEEE, 2001.

[34] V. Poosala and V. Ganti. Fast approximate query answering using precomputed
statistics. In Proceedings of ICDE 1999, page 252, 1999.

[35] V. Poosala, P.J. Haas, Y.E. Ioannidis, and E.J. Shekita. Improved histograms for
selectivity estimation of range predicates. ACM SIGMOD Record,
25(2):294–305, 1996.

[36] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar,
S. Pail, and L. Pearlman. A Metadata Catalog Service for Data Intensive
Applications. In Proceedings of Supercomputing 2003 (SC2003), November
2003.

[37] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Mary Manohar, Sonal Patil, and Laura Pearlman. A metadata
catalog service for data intensive applications. In SC ’03: Proceedings of the
2003 ACM/IEEE Conference on Supercomputing, page 33, Washington, DC,
USA, 2003. IEEE Computer Society.

[38] Y. Su and G. Agrawal. Supporting user-defined subsetting and aggregation over
parallel netcdf datasets. In 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 212–219. IEEE, 2012.

[39] Y. Su, G. Agrawal, and J. Woodring. Indexing and parallel query processing
support for visualizing climate datasets. In 2012 41th IEEE/ACM International
Conference on Parallel Processing (ICPP), pages 249–258. IEEE, 2012.

[40] Rattapoom Tuchinda, Snehal Thakkar, A Gil, and Ewa Deelman. Artemis:
Integrating scientific data on the grid. In Proceedings of the 16th Conference on
Innovative Applications of Artificial Intelligence (IAAI, pages 25–29, 2004.

[41] S. Vazhkudai and J. Schopf. Using disk throughput data in predictions of
end-to-end grid transfers. In Proceedings of the Third Workshop on Grid
Computing (Grid 2002), November 2002.

[42] J.S. Vitter. An efficient algorithm for sequential random sampling. ACM
transactions on mathematical software (TOMS), 13(1):58–67, 1987.

[43] C. Wang, A. Garcia, and H.W. Shen. Interactive level-of-detail selection using
image-based quality metric for large volume visualization. Visualization and
Computer Graphics, IEEE Transactions on, 13(1):122–134, 2007.

[44] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heitmann.
In-situ sampling of a large-scale particle simulation for interactive visualization
and analysis. In Computer Graphics Forum, volume 30, pages 1151–1160.
Wiley Online Library, 2011.

[45] K. Wu, E.J. Otoo, and A. Shoshani. Compressing bitmap indexes for faster
search operations. In Scientific and Statistical Database Management, 2002.
Proceedings. 14th International Conference on, pages 99–108. IEEE, 2002.

[46] K. Wu, K. Stockinger, and A. Shoshani. Breaking the curse of cardinality on
bitmap indexes. In Scientific and Statistical Database Management, pages
348–365. Springer, 2008.

[47] Kesheng Wu, W. Koegler, J. Chen, and A. Shoshani. Using bitmap index for
interactive exploration of large datasets. In 15th International Conference on
Scientific and Statistical Database Management, 2003, pages 65– 74. IEEE,
July 2003.

[48] L. Xu, T.Y. Lee, and H.W. Shen. An information-theoretic framework for flow
visualization. Visualization and Computer Graphics, IEEE Transactions on,
16(6):1216–1224, 2010.

24

