












system, from LANL, for our experiments, a subset of this
data was selected, consisting of just the magnetic field vector,
and converted to ParaView’s MultiBlock format. It should be
noted that the data was written out in “append” mode to allow
for the least amount of time to be spent on parsing of the data
as binary data in this format can be directly read into memory
by the ParaView readers. Additionally, of the total 342 time
steps, 20 were selected (steps 0 through 190 in increments of
ten). As a result, our test set was approximately 135 GB in
total size and 6.9 GB per time step.

Fig. 3. Representative images of the datasets tested. The image on the left is
from the Los Alamos National Laboratory’s VPIC Plasma Physics simulation
of magnetic reconnection. The image on the right is from the Los Alamos
National Laboratory’s Ocean Modeling Simulation showing ocean salinity.

2) Ocean Salinity - Ocean Simulation: The ocean salinity
data set was generated by LANL’s Climate, Ocean and Sea
Ice Modeling project [20]. The model this data represents is
a time series of the world’s ocean salinity from surface to
ocean floor ranging from February 2001 to January 2004. This
represents 36 total time steps, one per month in the given
range. Again, due to constraints on moving data from LANL to
our test cluster at TACC, only one variable worth of files were
moved. Once located on the test cluster, the data files were pre-
processed to clone the original variable ten times to match the
original number of variables tracked by the simulation. The
final VTK MultiBlock files, containing the data in rectilinear
grid format, averaged 25 GB per time step. Thus, the entire
data set, across all time steps, encompassed 887 GB worth of
data.

C. Validation of VisIO under Simulated Workload

Before implementing a VisIO compatible reader, a bench-
mark was performed with a similar workload as the proposed
reader to validate that HDFS would be capable of reading with
the bandwidth needed for use by ParaView. The benchmark
consisted of the same sequence of I/O calls as the reader would
make but executed against dummy files. These dummy files
were setup such that each node in the test would be given a
unique file that was 1 GB in size, thus making this a weak
scaling test. Node count was increased from 1 to 128 nodes, in
powers of 2, for testing. The benchmark would then proceed
to have each of the nodes open and read into memory the
contents of its assigned file with the process being timed. The
results of this test are shown in Figure 4.

The file systems tested included the Lustre parallel file
system, and HDFS in two different configurations. The Lustre
installation is globally shared amongst the nodes in the cluster

and all test files were stored on the same shared volume. The
HDFS variant 1 test was setup such that the HDFS chunk
size was equivalent to the file size so that the file would not
be split into chunks (and placed on various nodes) while the
replication factor was set to equal the number of nodes in the
cluster. This test represents an ideal case where all of the file is
present on a given node that the MPI job could need it on. The
variant 2 test used the HDFS defaults where the chunk size
was set to 64 MB and the replication factor set to 3. This test
represents the expected performance of HDFS without tuning
and with blocks transfered over the network to reassemble
the file for use by the MPI program. Finally, we plot the
Max Theoretical Hard Drive Bandwidth to show the aggregate
bandwidth possible from the given number of raw hard drives
based on the maximum quoted data sheet bandwidth [18] for
transferring data from the platter to the disk buffer. This sets
the maximum upper threshold theoretically possible and allows
for comparison of the efficiency of HDFS.

Two key observations can be made from these results that
are important considering the nature of the application and
its workload. First, it can be seen that both HDFS tests
follow the same linear growth trend as the theoretical hard
drive bandwidth but at a scaled rate. This linear growth in
available bandwidth as the number of nodes increases indicates
that HDFS could be used to scale I/O capacity on demand
as larger datasets are presented to the visualization system.
Second, it can be seen that Lustre, while able to produce
considerable bandwidth, peaks in its ability to deliver data
at 32 simultaneous clients and begins falling off as the node
count continues to increase. This is due to Lustre having a
finite network connection in which to serve data to the cluster
that saturates and then hampers read performance once this
saturation point has been reached. This behavior is not scalable
as dataset size increases or more nodes are added to the cluster
and limits Lustre’s ability to deliver data on demand in a
visualization style workload. Thus these results motivate our
exploration of a VisIO enabled reader.

D. Testing of ParaView using VisIO Reader

1) Test Setup: Once it was proven that HDFS could provide
the needed read bandwidth to sustain ParaView, the VisIO
system was implemented per the discussion in Section III.
Testing was conducted such that ParaView would read and
process a complete time series for a given dataset and report
the read times for every file opened for processing. A python
batch script was written to setup the visualization environment
and needed filters to create a reproducible test. The script then
instructed ParaView to iterate through each of the time steps
and produce a JPEG image of the rendered screens. This script
was submitted to the ParaView server via the provided pvbatch
utility to produce a test run on a given node count with the
desired file system.

For testing, ParaView with the test script was run on 16,
32, 64, and 128 nodes on TACC’s Longhorn cluster. 16 nodes
was selected as the minimum number of nodes to test on due
to the need for enough aggregate hard drive space to store
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number of clients increases.

the datasets and their replicas. The largest value, 128 nodes,
was chosen as it was the largest number of nodes a single
user would be allowed to acquire in a job allocation on a
regular basis without needing intervention from the system
administrators.

The provided Lustre instance was directly accessed and only
the number of clients accessing it was increased with each
test set. HDFS was run such that the number of DataNodes
was equal to the number of ParaView server nodes thus
allowing the file system to scale with allocation size. Test
results reported for both file systems represent the average read
performance, per file, seen over each file opened for processing
and across three retests for a given node count. In reporting
average times, we can present a fairer picture of what the
user will see over time when using the system rather than
reporting maximum read times which show the worst case for
a particular run as well as highlighting system noise induced
variability.

HDFS was tested in two configurations: with and without
the locality awareness algorithm activated. Each HDFS variant
was configured slightly different to produce a fair test based
on how the file system was going to be used. Testing of HDFS
without the locality awareness was done by directly loading
HDFS with the test data files using the defaults of a 64 MB
chunk size and three way replication. The “.vtmb” index files
were replicated by the number of nodes in the cluster so that
each node could directly look up the metadata for the dataset
to be visualized without waiting for a network transfer (per
section III.C). For the HDFS test with locality, test files were
loaded into the HDFS exactly as described in section III.C -

using a chunk size equal to file size and three way replication.

2) Scalability of VisIO Reader: The central advantage of
leveraging HDFS rather than a central parallel file system
is the promised ability to scale as needed to accommodate
larger I/O demands. Proving this called for a strong scaling
test where a given real simulation dataset was processed by
ParaView with increasing node counts from 16 to 128 nodes
(in powers of two) using the VisIO based reader (with and
without the locality algorithm). The results were compared to
the baseline Lustre installation using the same node count.
The VPIC dataset was chosen due to its size which permitted
scaling down to 16 nodes, with the data set fitting into the
HDFS, while also allowing scaling to 128 nodes with a non-
trivial per node file size.

Similar to the weak scaled synthetic benchmark, previously
discussed, the strong scaling test run with ParaView showed
that the VisIO enabled reader was capable of continuously im-
proving I/O performance as node count was increased. Shown
in Figure 5, read times for the VPIC dataset exponentially
decreased as the node count (and by extension hard drive
count) was increased by a power of two. HDFS’s performance,
follows the same trend regardless of the reader’s use of the
locality algorithm, but as shown, the locality algorithm does
shift the read times consistently downward with the improved
read performance. In comparison, Lustre’s read performance
held approximately constant regardless of node count.

Thus, from this trending, we can reasonably expect that
given more nodes, the VisIO enabled reader would be able
to continue to linearly gain in bandwidth allowing for still
faster reads of the given dataset or capability to read in still
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reader both with and without the ability to sechedule MPI ranks based on file system locality information.

larger datasets with acceptable performance. Additionally, we
notice that without the locality algorithm, HDFS is able to
surpass Lustre in read performance for this particular dataset
at between 64 and 128 nodes. Using the locality algorithm, the
read performance improves enough such that HDFS matches
and outperforms Lustre at a node count just under 64.

3) Closer Look: Reader Performance at 128 Nodes: While
Figure 5 clearly indicates the scaling trend expected from the
VisIO based reader using HDFS compared to the standard
version using Lustre, it does not clearly show the performance
benefits to ParaView of using HDFS as compared to Lustre.
Taking a closer look at the 128 node test runs, we see that
Lustre is able to read a given file out of the files needed to
construct the entire time series in 1.512 seconds while HDFS
takes either 1.134 seconds or 0.776 seconds depending on if
the locality algorithm is used or not. These differences in read
times are illustrated in Figure 6. This translates into a 28.57%
improvement in read performance if the VisIO enabled reader
without locality is used compared to Lustre and a 64.38%
improvement if the locality algorithm is used.

As a check, the ocean salinity data, was run as a second
dataset at 128 nodes to see how it performed with the various
readers. These results, also illustrated in Figure 6, showed a
significant drop in read times when using HDFS. Lustre was
able to read in the given data in 5.320 seconds per file while
the HDFS reader was able to read in the given data at a rate of
3.480 seconds per file without the locality algorithm and 2.509
seconds with the locality algorithm. This represents a 41.82%
and a 51.43% improvement respectively in per file read times.

4) Locality Algorithm Effectiveness: Use of a distributed
file system by VisIO provides the ability to remove the bottle-
neck of a centralized parallel file system’s network which is
usually a fraction of the cluster interconnect fabric’s capability.
However, while this does provide a marked improvement in

0 
0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

4.5 
5 

5.5 
6 

VPIC  Ocean Salinity 

Re
ad

 T
im

e 
(s
ec
on

ds
) 

Dataset 

Comparison of Data Sets Visualized at 128 Nodes 

Lustre  HDFS without Locality  HDFS with Locality 

Fig. 6. Comparison of results collected on 128 nodes of TACC’s Longhorn
Visualization cluster. Two datasets were tested: VPIC and Ocean Salinity.
These datasets were tested using the Lustre Parallel File System as well as
using HDFS with its locality algorithm enabled.

I/O performance, further improved times can be realized when
processes are scheduled to nodes which locally contain the
data needed, as discussed in Section III.B. Looking at the test
data detailed above, we see that the VPIC dataset, for example,
achieves a 35.81% improvement in using the locality aware
VisIO based reader over the version that is not locality aware.

During testing, the number of requests for files by processes
not able to access the data locally was tracked. This number
was then converted to a ratio of the number of remotely
accessed files to the total number of files read over all of
the time steps. This ratio was used to track the effectiveness
of the locality algorithm in its ability to schedule processes
to nodes containing local copies of the data. This remote pull
ratio calculated for the VPIC and ocean salinity datasets was
7.42% and 7.68% respectively. This relatively small proportion
of remotely pulled files is a result of the HDFS’s pseudo-
random placement algorithm which presents a situation where
the needed files for a given time step may not be evenly
distributed such that across all nodes there is at least one



Fig. 7. Trace of time taken for each call to vtkFileSeriesReader with the stock reader in ParaView 3.8.0 and using Lustre as the file system. This represents
a baseline of what ParaView currently experiences in terms of I/O read performance.

Fig. 8. Trace of time taken for each call to vtkFileSeriesReader with VisIO support embedded but without the locality algorithm in operation. The number
of spikes in operation time and the wide spread of results around the trend line indicate wider variability in read times as a result of I/O not being contained
to nodes that locally store the data needed.

unique file for that time step.

In addition to tracking the remote file request percentage, a
trace of the request time for each call into vtkFileSeriesReader
was captured and plotted in Figure 7 for the stock reader in
ParaView 3.8.0 being used with Lustre. As shown, the varia-
tion in read times around the trend line is fairly wide which
complements the computed standard deviation of 0.70 seconds.
In addition, frequent bursts with read times several seconds
higher than the mean are seen indicating high congestion to
the parallel file system thus bottlenecking the application while
the read request waits to return.

In comparison, Figure 8 plots our VisIO enabled reader
but with the locality algorithm disabled. This shows strictly
the benefit a distributed file system can provide compared
to a parallel file system in terms of overall read times and
the variability in the individual operations. A look at this

trace shows that without the locality algorithm in operation,
there are still many instances of spikes in read time that are
significantly higher than the average but not as long in duration
indicating improved bandwidth. While not as substantial as
the peaks seen using Lustre, this still represents the longer
times needed to transfer large portions of the time step over
the network to the requesting nodes from the nodes storing
the data. In addition, the standard deviation for this particular
test run is 0.53 seconds showing the variability of the non-
outlier read times is less than Lustre’s standard deviation of
0.70 seconds.

In comparison to the plot in Figure 8, the plot shown in
Figure 9 shows the same VisIO enabled reader but with the
locality algorithm operational. In this case, it can be seen that
the number of outliers has been reduced to a sporadic few
indicating the minimization of longer running network reads.



Fig. 9. Trace of time taken for each call to vtkFileSeriesReader with VisIO support enabled and using the locality algorithm. Compared to Figure 8,
the number of spikes in read time are diminished and there is a tighter variability around the trend line when computation is kept predominantly to nodes
containing local copies of the needed data.

This also corresponds with the lower percent of remote pulls
detailed above. Additionally, the standard deviation drops to
0.28 seconds from 0.53 seconds without the locality algorithm.
This in turn will yield more consistent read times for the
visualization application; a preferable condition due to the
interactive nature of the application’s use.

E. Multi User Environments

While not common in traditional HPC environments, a multi
user environment may be a possible deployment path for a data
intensive compatible cluster. In this setup, nodes run tasks from
multiple users either simultaneously or in a context switching
manner thus allowing multiple user’s jobs to run and access the
distributed file system simultaneously. This is in stark contrast
to traditional HPC setups where a user is the sole user of a
subset of nodes in the cluster for the duration of the job.
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Thus, to see how VisIO and HDFS would handle in an
environment where it is not the sole user, we devised a test
where two instances of ParaView would be launched at the
same time and asked to load two different datasets (VPIC

and ocean salinity) from HDFS. This would simulate two
users working on two problem sets at the same time. The
same test was also performed against Lustre with the stock
ParaView reader to show how similar increased workloads
would compare. The results are plotted in Figure 10 and show
the average over three runs compared to the numbers plotted
in Figure 6.

It should be noted that there is a 3.08 second increase
in time to read the VPIC set from Lustre under increased
load while we see only a 0.275 second increase in read time
using the VisIO package with HDFS. In comparison, the ocean
salinity visualization showed increases in read time but not as
substantial. Lustre showed a 0.221 second increase in read
time while VisIO with HDFS showed a 0.293 second increase
from their single user values. The relatively minor increases
in the ocean salinity average read times can be attributed to
the fact that the ocean salinity dataset runs for a longer time
(12 time steps longer) than the VPIC dataset. This gives the
tail end of the test similar performance characteristics as the
single user tests thus dampening the effect of having multiple
processes running.

Finally, we noted the changes in the standard deviations
of the runs’ individual I/O operation times and found that
between the multi user runs with Lustre and VisIO a standard
deviation of 2.298 seconds and 0.690 seconds respectively
were seen for VPIC. Ocean salinity showed a Lustre standard
deviation of 1.880 seconds while the VisIO standard deviation
was 1.595 seconds. Particularly illustrated with the VPIC
runs, it can be seen that VisIO manages to keep variability
in individual read times closer to constant than the standard
reader was able to using Lustre especially under increased
loads present in a multi user environment.

V. RELATED WORKS

Several visualization packages exist for scientific data anal-
ysis and are in widespread use within the High Performance
Computing (HPC) arena. VTK [21] is a framework that is used



to abstract away the OpenGL calls needed to display graphics
thus allowing the scientist to focus on their data rather than
the system. Parallel VTK [22] and its front-end, ParaView [23]
are higher level implementations of the VTK framework which
allow the user to run VTK jobs in parallel as well as to build
and control VTK programs from an easy to use GUI, respec-
tively. VisIt [24], like ParaView, is a GUI front-end to VTK
that allows the user to control the visualization process without
needing detailed, hands-on programming. EnSight [25] is an
alternate, commercially developed, tool and environment that
supports scientific visualization at scale.

Visualization at scale, however, presents its own set of chal-
lenges. Childs, et. al. [26] detail how they needed to apply a
subset of possible problem specific optimizations dynamically
to the VisIt pipeline to allow it to perform acceptably at
scale. These optimizations are specified in the notion of a
contract which is passed along the pipeline detailing what
optimizations are needed from the end of the pipeline back
to the beginning. These optimizations include such ideas as
minimizing disk reads and details on how to manipulate
the data within the pipeline. Childs, et. al. [6] also detail
the performance bottlenecks experienced when visualizing at
scale. This work, as discussed earlier, showed that I/O times
dwarfed the time needed to run the visualization algorithms
(isosurfacing in this case) and render the final image. This
result is the motivating force behind our VisIO solution to
rework I/O within the visualization pipeline.

Considering the demand for visualization at scale and
evidence of an I/O bottleneck, work has been done to alleviate
the problems associated with large amounts of data. Parallel
File Systems have been made available that are capable of
allowing multiple nodes access to the same file or subset of
files at significant bandwidths. The most prominent of these
file systems include: PVFS2 [27], Panasas [28], Lustre [29],
and GPFS [30]. However, even with the success of these
file systems, improvements have needed to be proposed and
implemented to accommodate common patterns seen in HPC
workloads, particularly N-to-1. Carns, et. al. [12] detail five
techniques to help handle small file accesses within a parallel
file system (PVFS2 in this case). Small file access poses
a performance problem for parallel file systems which are
designed to best handle large I/O operations. Similarly, Thakur,
et. al. [13] detail a method for handling noncontiguous I/O
requests from a single process and multiple processes within
a cluster to the same file (N-to-1 access pattern). For the single
process case, data sieving is used to have a process read in
a large chunk of a file and filter out of various smaller parts
needed. For the multiple process case, collective or two-phase
I/O calls for each process to read a contiguous region of the
file and then use inter-process communication to redistribute
the information read to the requesting process. While these
techniques work well for HPC simulations, a visualization
application working with a N-to-N pattern and without MPI-
IO support will not be able to benefit.

While these techniques are general in nature, some work
has been done to specifically address I/O performance within

scientific visualization workflows. Yu, et. al. [31], discuss a
method of using input processors to handle the data fetching
from the file system using optimized MPI-IO routines. Their
strategy, while showing alleviation of the I/O bottleneck,
requires dedicated nodes to be set aside for the task of
acting as input processors and the number required grows
proportional to data set size. Perterka and Ross, et. al. [7],
[8] explored running volume rendering applications at scale
directly on their BlueGene/P system rather than on a dedicated
visualization system. Their work shows that using MPI-IO
operations as well as reorganization of the simulation results
within the file assisted in providing needed I/O performance
for large datasets. Their technique, however, relies on the
presence of a parallel file system and interconnect network
that is sufficiently fast as to not bottleneck the visualization
workflow.

Complementing this work on parallel file systems, dis-
tributed file systems were developed to address the issues of
scaled out datacenters with large data volumes. The seminal
distributed file system currently is the Google File System
(GFS) [32] used to run almost all of Google’s internal in-
frastructure. The GFS calls for hard drives to be locally
installed in their servers rather than using a centralized file
system to allow for the co-location of computation on nodes
where the needed data is stored. Since GFS is a propietary
system, there exists a couple of open source implementations
which strive to replicate GFS’s functionality. The most mature
of which is Hadoop’s Distributed File System (HDFS) [10]
and upon which our proposed improvements are based. Also
available, are the CloudStore [33] and Ceph [34] distributed
file systems. Finally, D.E. Shaw Research recently proposed
a new system called Zazen [35] which migrates data from
compute resources to caches on an analysis cluster to allow
for local access to data for post-processing. While similar in
spirit to our employed method, Zazen requires specially built
analysis applications which integrate with the cache system to
determine delegation of tasks to nodes where the data locally
resides in a cache. In contrast, our VisIO system allows a
general purpose visualization application to leverage the data
locality provided by the HDFS (and without the limitations of
a cache) with just changes to the data reader code which is a
modular component to be replaced as needed.

VI. CONCLUSION

In this paper we have proposed and developed an I/O
system that is optimized for handling scientific visualization
applications working with ultra-scale datasets. Our system,
VisIO, allows traditionally MPI and POSIX based visualiza-
tion applications to leverage the increased bandwidth possible
from a distributed file system. In addition, we further stregthen
the ability of these applications to benefit from a DFS by
providing a data locality aware scheduling algorithm that is
used to schedule individual process ranks on nodes that contain
the needed data for the operation to be performed.

A VisIO enabled ParaView reader was put into operation
on TACC’s Longhorn visualization cluster and used with the



Hadoop Distributed File System. Testing was conducted on
data from the VPIC plasma physics simulation, and the ocean
salinity simulation. Results showed that use of HDFS, if
allowed to scale with the allocated node count, will linearly
improve in read bandwidth available to the application and can
exponentially decrease the amount of time needed to read a
data file by a given MPI rank. Compared to the provided,
statically-provisioned, Lustre parallel file system, HDFS is
capable of dynamically allocating storage resources (as easily
as CPU resources are allocated for a compute-bound job) and
given enough nodes can over take Lustre in read performance.
Testing showed a between 50 and 65% read performance
improvement amongst the datasets when read via our VisIO
enabled reader.

Overall, this system has proven that it is a possible path
forward for the ever increasing demands being placed on
scientific analysis visualization applications which are being
constantly challenged to interactively deliver insight to current
Petascale and future Exascale simulations and experiments.
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