

Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

A Report Documenting the Completion of the Los Alamos National
Laboratory Portion of the ASC Level II Milestone
”Visualization on the Supercomputing Platform”

James Ahrens, John Patchett, Li-Ta Lo, David DeMarle, Carson Brownlee, Christopher Mitchell

August 13, 2010

1

1 Introduction

This report provides documentation for the completion of the Los Alamos portion of the ASC Level
II ”Visualization on the Supercomputing Platform” milestone. This ASC Level II milestone is a
joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The
milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text.

Visualization and analysis of petascale data is limited by several factors which must be
addressed as ACES delivers the Cielo platform. Two primary difficulties are:

1 Performance of interactive rendering, which is the most computationally
intensive portion of the visualization process. For terascale platforms,
commodity clusters with graphics processors(GPUs) have been used for
interactive rendering. For petascale platforms, visualization and rendering
may be able to run efficiently on the supercomputer platform itself.

2 I/O bandwidth, which limits how much information can be written to disk. If we
simply analyze the sparse information that is saved to disk we miss the opportunity
to analyze the rich information produced every timestep by the simulation. For the
first issue, we are pursuing in-situ analysis, in which simulations are coupled directly
with analysis libraries at runtime.

This milestone will evaluate the visualization and rendering performance of
current and next generation supercomputers in contrast to GPU-based visual-
ization clusters, and evaluate the perfromance of common analysis libraries coupled with
the simulation that analyze and write data to disk during a running simulation. This mile-
stone will explore, evaluate and advance the maturity level of these technologies
and their applicability to problems of interest to the ASC program.

Figure 1: The ASC Level II Milestone “Visualization on the Supercomputing Platform”

This report is organized by the directives in the last sentence of the milestone text to explore,
evaluate and advance the maturity level of CPU-based rendering technology. In section
2 of the report, we document our advancement of the CPU-rendering technology for scientific
visualization, in section 3 we document our evaluation experiments, and in section 4 we document
the exploration activities. In summary, we:

• Advanced the maturity level of CPU-based rendering technology improving speed 2-10 times
over standard methods of CPU-based rendering.

• Evaluated the current CPU rendering against GPU based rendering and our improved CPU
rendering.

• Explored possibilities of rendering on the Cell platform and methods for improving CPU
rendering for production visualization.

2

2 Advanced the Maturity Level of CPU-based Rendering on the
Supercomputing Platform

Figure 2: The Manta Ray tracer running in ParaView with reflections and
shadows.

As part of this ASC Milestone
we integrated the University of
Utah’s Manta Ray tracer into
ParaView. The Manta ray-
tracer is discussed in detail in
section 3.1.4. The Manta Ray
tracer plug-in is included in the
ParaView 3.8.0 release. CPU
rendering with Manta is now
faster than it was with the Mesa
3-D graphics library, we have
advanced the ASC programs
ablity to render on supercom-
puting platforms with this ef-
fort.

From the Release notes for
ParaView 3.8, “ParaView now
includes (in source form only)
an interface to the University of
Utah’s Manta interactive soft-
ware ray tracing engine. The
Manta plugin provides a new
3D View type which uses Manta
instead of OpenGL for rendering. The plugin is primarily being developed for visualization of large
datasets on parallel machines. In single processor configuration it has the benefit of allowing real-
istic rendering effects such as shadows, translucency and reflection.”

Figure 2 shows ParaView rendering with the Manta plug-in using shadows and reflections on a
Sandia impact data set.

3 Evaluated the CPU and GPU-based Rendering Performance

3.1 Performance Evaluation Setup

In our evaluation we studied CPU and GPU-based rendering performance on two supercomputing
platforms and a large multi-core server node: Lobo, a Los Alamos Tri-lab Linux compute cluster,
Longhorn, a latest generation GPU-based visualization cluster at the Texas Advanced Comput-
ing Center and Kratos, a 32 core HP server. We used three datasets of varying sizes including
randomly generated triangles, a synthetic wavelet dataset, and a dataset from Los Alamos’s ASC
plasma simulation code, VPIC. The rendering performance tests are run from within ParaView, the
scalable open-source scientific visualization tool, designed and developed by Los Alamos, Sandia,
Kitware and a number of other partners. Three different rendering packages were tested: Manta (an
open-source raytracer), Mesa (a software implementation of OpenGL), and OpenGL using NVidia

3

(a) Random Triangles (b) VPIC Contours (c) Wavelet Contours

Figure 3: Eight million triangle version of the three test data sets. See section 3.1.2 for more details.

hardware.

3.1.1 Supercomputing Platforms

• Lobo is a 272 node, 4X DDR InfiniBand connected cluster of AMD based nodes. It has 32
GB of RAM and 4 AMD opteron model 8354 quad core processors, for a total of 16 cores,
per node at 2.2 GHz. Each core has a 64KB L1 cache, and a 512KB L2 cache, while each
quad core shares a 2MB L3 cache. Lobo is a TriLab Linux Capacity Cluster (TLCC) system,
similar systems are available to ASC Computing users at Los Alamos, Livermore, and Sandia
National Laboratories.

• Longhorn is a visualization and data analysis cluster located at the Texas Advanced Com-
puting Center (TACC). Longhorn has 256 4X QDR InfiniBand connected nodes, each with 2
Intel Nehalem quad core CPUs (model E5540) at 2.53 GHz and 48 GB of RAM. Each node
of Longhorn also has 2 NVidia FX 5800 GPUs.

• Kratos is an HP Proliant DL785 G5 with 8-quadcore AMD Operton 8380 processors at 2.5
GHz with 128GB RAM. It is somewhat slower than individual nodes of Lobo, but it has 32
cores and much more RAM. This large machine allowed us to expand our testing to extremely
large polygon counts.

3.1.2 Datasets

• Random Triangles We generated a test data set, originally to test Manta. It can easily and
quickly produce large quantities of triangles for rendering. There are typically more triangles
than can map to single pixel. An image showing a rendering of 8 million of these triangles is
shown in Figure 3a.

• VPIC visualization-generated Triangles We collected a timestep of VPIC data from a
Los Alamos simulation. We calculated two isosurfaces that produced 1, 2, 4, 8, and 16 million
triangles for use in our evaluation. Though each set of triangles produce a different image

4

they are generally two parallel nearly planar surfaces. A view of this data set can be seen in
in Figure 3b.

• Wavelet Triangles Wavelet is a computed synthetic data set source released with ParaView.
We generated a 2013 data set and then calculated as many isosurfaces as needed to produce
a quantity of triangles. This produces a set of nested isosurfaces that could be considered
as a best case for renderers (such as Manta) that use an occlusion/early ray-termination
optimization since most of the triangles in the dataset are obscured by triangles in front of
them. An image produced with 8 million of these triangles can be seen in Figure 3c.

3.1.3 Visualization Software

• ParaView We use ParaView (http://www.paraview.org) for a visualization research and
development framework to test new algorithms and visualization paradigms. ParaView is an
open source scalable visualization tool that is very modular in it’s design. We used ParaView
to explore methods of rendering on supercomputers.

3.1.4 Rendering Software

• Manta ray tracer is an interactive ray tracer from the University of Utah. It is portable and
is distributed under an open source license. Over the past two decades, advances in both
hardware performance and ray tracing implementations have made interactive ray tracing
feasible. The Manta open source ray tracing engine is one of the most advanced, and flexible
interactive ray tracers currently available. Manta is a mulithreaded application and library,
in which processors independently trace different sets of pixels simultaneously. Within each
thread, packets of rays are traced together to improve memory locality, and within packets rays
are traced simultaneously using SIMD instructions to make use of intraprocessor parallelism.
Manta is unique in that it is not only fast but also very flexible. The rendering engine can
be scaled up in terms of image quality (at a cost of reduced interactivity), and it supports a
large number of primitive types and rendering modalities (volume rendering, direct isosurface
rendering, particle rendering). See http://mantawiki.sci.utah.edu/manta/index.php/
Main_Page for more information on Manta.

• OpenGL Hardware API is a cross platform application programming interface (API) that
is well supported by graphics hardware (GPUs). GPUs are considered the fastest method for
rendering using the OpenGL API. OpenGL is typically used by today’s graphics hardware.
We used OpenGL on the Longhorn cluster to show current state of the art rendering capability.
See http://www.opengl.org/ for more information.

• Mesa 3-D Graphics Library is an open-source software implementation of the OpenGL
API for use on general purpose CPUs. The Mesa 3-D Graphics Library is also released under
an open source license. Mesa has been the defacto standard for OpenGL rendering when
not using OpenGL supported graphics hardware. See http://www.mesa3d.org/ for more
information.

The size of the rendering window for all tests is 1024 by 1024.

5

3.2 Single Node Rendering Performance

Figures 4, 5, and 6 show a comparison of single node performance of the three rendering methods we
evaluated: GPU on Longhorn, CPU on Lobo with Manta, and CPU on Lobo with Mesa. Figure 4
shows the performance of random triangles. We consider this the worst case performance due to
the irregularity and the data from experimental results bear this out. The x-axis shows millions
of triangles in the rendered scene, the y-axis show the average frame rate as the camera rotates
around the scene in 3 degree increments. These 3 plots represent the best usage of a single node to
maximize rendering performance with current methods. That is Mesa was run with MPI using 16
processes, Manta was run with 1 process using 16 threads, and Longhorn was run with 1 process
using a single GPU. All plots show decresing performance as the number of triangles increase and
all plots show a convergence of Manta and GPU rendering at 16 million triangles. It is possible
that we could have run 2 GPU’s per Longhorn node, given the single CPU performance, this would
extended that convergence to 32 million triangles, at best, since there would then have to be a
buffer readback and a composite operation.

CPU rendering performance was improved by 2-10x, and at 16 million polygons
rendering performance is equal to that of the GPU.

3.3 Compositing

Image compositing is a parallel algorithm that merges images from each process and produces a
final correct image. In our performance tests we used a binary-swap compositing algorithm[2]. This
is an efficient parallel compositing algorithm that exchanges portions of images between processes
to produce a correctly rendered result. The IceT compositing library[4] is the default compositing
scheme in ParaView. Although very efficient, IceT’s performance is also very data dependent and
IceT is integrated directly with the renderer. In order to clarify our rendering and compositing
performance results we used the binary swap compositor. Figure 7 shows the compositing perfor-
mance baseline for both Lobo and Longhorn. The x-axis shows the number of physical compute
nodes not processors (for processor core counts, multiply by 8 for Longhorn and 16 for Lobo). The
y-axis shows frames per second. As the number of nodes increase both show asymptotic behaviour.
The asymptote is completely dependent on the speed and quality of the nodes and the network.
The Longhorn network is QDR infiniband and is expected to be twice as fast as Lobo’s DDR net-
work. Noise on the compute nodes and/or the network, that is more likely to be encountered for
larger node counts, can adversely affect the compositing performance. We used ParaView to render
empty scenes and step through the compositing process to document this baseline. Note that both
machines settle near 20 frames per second with no rendering.

The GPU Longhorn cluster has a faster network than the CPU cluster Lobo. This
difference will affect our rendering performance results.

3.4 Parallel Rendering

Parallel rendering occurs when the total polygons are divided amongst many processors and the
results are composited[3]. Possible methods include sort-first where the polygons are sorted prior
to rendering and distributed to processors that are responsible for a discrete piece of the display.
Sort-last methods distribute the polygons to each processor which also computes a depth value,
an entire full display image is rendered by each processor and then a compositing step produces
the pixel closest to the camera from all parallel rendering nodes. We look at sort-last rendering

6

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16

F
ra

m
e
s

P
e
r

S
e
co

n
d

Millions of Random Triangles

GPU, Longhorn, Quadro FX 5800
CPU, Lobo, Manta, 16 threads

CPU, Lobo, Mesa, 16 processes

Figure 4: Single Node Performance on random triangles.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16

F
ra

m
e
s

P
e
r

S
e
co

n
d

Millions of Contour Triangles

GPU, Longhorn, Quadro FX 5800
CPU, Lobo, Manta, 16 threads

CPU, Lobo, Mesa, 16 processes

Figure 5: Single Node Performance on wavelet contours.

7

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16

F
ra

m
e
s

P
e
r

S
e
co

n
d

Millions of Triangles

GPU, Longhorn, Quadro FX 5800
CPU, Lobo, Manta, 16 threads

CPU, Lobo, Mesa, 16 processes

Figure 6: Single Node Performance on VPIC contours.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16 32 64 128

F
ra

m
e
s

P
e
r

S
e
co

n
d

Nodes

Longhorn Compositing
Lobo Compositing

Figure 7: Compositing baseline for Lobo and Longhorn.

8

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 64 128

F
ra

m
e
s

P
e
r

S
e
co

n
d

Nodes

Longhorn
Lobo

Figure 8: Strong scaling of 16 million random triangles.

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 64 128

F
ra

m
e
s

P
e
r

S
e
co

n
d

Nodes

Longhorn
Lobo

Figure 9: Weak scaling with 16 million random triangles per node.

9

and compositing where the total time to produce an image is the sum of the slowest processor’s
rendering and the time to composite (IMAGEtime = RENDERtime + COMPOSITEtime).

3.4.1 Strong Scaling

Strong scaling is the scaling attribute where the problem size remains constant while increasing
processor resources to solve the problem. Figure 8 shows strong scaling of 16 million random
triangles on both Longhorn and Lobo. The total number of triangles processed across the entire
job was held constant at 16 million. For this strong scaling graph the number of triangles per
node decreases, specifically each processor is assigned Total Triangles

Total Nodes . As the number of nodes
increases the number of triangles per node decreases and thus the time for each node to render
those triangles decreases. At the limit the rendering time would dissipate and the total time would
equal compositing (IMAGEtime=COMPOSITEtime). This can be seen best on Longhorn which
can render smaller polygon counts very quickly. Longhorn shows an initial increase in performance
for going parallel, at 16 nodes it is becoming bound by the compositing and at 32 nodes it starts
dropping performance. Lobo with CPU rendering, doesn’t show the initial performance increase
since the decreasing RENDERtime is similar to the increasing COMPOSITEtime. As both scale
however, COMPOSITEtime becomes the clear upper bound.

For parallel rendering a fixed number of polygons, increasing the rendering re-
sources binds maximum performance to the performance of compositing.

3.4.2 Weak Scaling

Weak scaling is the scaling attribute where the problem scales with the processor resources. For our
testing we chose to show 16 million triangles per node. The total triangles for a data point in Figure
9 can be calculated by multiplying 16 million by the number of nodes. Since the RENDERtime

remains constant and the COMPOSITEtime approaches a constant at scale we would expect the
IMAGEtime to approach a constant for weak scaling. This can be seen in Figure 9. We rendered
up to 2 billion polygons on Longhorn and 1 billion on Lobo.1

This weak scaling study shows the ability to render large quantities of polygons at
similar rates with both CPU and GPU resources.

3.5 Massive Polygons

In order to test extremely large triangle counts on single nodes we compare Kratos and a single
Longhorn node. Figure 10 summarizes our results. The x-axis shows polygon counts of our random
triangles data set and again the y-axis shows frames per second. We were able to process 256 million
triangles on Kratos. We were only able to process up to 128 million triangles on the Longhorn node.
Longhorn’s GPU rendering performance drops below and stays below CPU rendering on Kratos
above 16 million polygons.

We ran tests for a variety of Manta thread counts, in order to utilize different numbers of
Kratos CPU cores, these are summarized in the plot. The differences in performance between
various thread counts would allow a fraction of a node to be used to dial performance to balance
the use of a node with other tasks. For instance, a computational model might run on 24 processors,

1An apparent NUMA memory-allocation issue prevented us from rendering 2 billion triangles on Lobo.

10

while 8 processors rendered an image to represent time steps between full checkpoints. This balance
could be dialed based on the computational needs of the model and the desired rendering.

CPU’s could be the preferred rendering method in circumstances where polygon
counts are extremely large. In addition, a node’s CPU resources could be allocated
to dial rendering performance to a needed level.

4 Explored the Use of CPU-based Rendering on the Supercom-
puting Platform

Our explorations primarily focus on general methods for improving the rendering performance on
the supercomputing platform. Since our production visualization tool, Ensight, is not open source,
we don’t have the ability to alter the rendering engine to use a non OpenGL renderer like Manta. We
are therefore investigating ways to improve the current software OpenGL by threading Mesa and by
overloading OpenGL calls and translating them to the Manta framework at runtime with GluRay.
We also are working to improve the rendering performance on the RoadRunner supercomputer.

4.1 Rendering on RoadRunner

We explored rendering using the Cell processor in the hopes that we could use the accelerators on
the RoadRunner platform for fast supercomputing platform rendering performance. We explored
two different approaches to software rendering on the Cell processors. The first one is based on a
traditional rasterization pipeline. Triangles are first transformed from 3D world coordinates to 2D
screen coordinates. The coverage of triangles vs. pixels are determined and the color and depth
values of each pixel for each triangle (called fragments) are interpolated from their perspective
values at triangle vertices. Fragments are then selected according to their depth value. The second
approach is based on 3D raycasting. Triangles remain in 3D space without first transforming them
to 2D space. We instead generate rays starting from camera positions through each pixel on the
image plane and test ray triangle intersection. The intersection points of rays vs triangles are used
to calculate color and depth values of the fragments. As in 2D rasterization, the final fragment
value are selected according to the depth value. Figure 11 shows the performance of our current
work.

There are some technical difficulties in parallelizing these two methods. Because the SPEs on
the Cell processors have only 256KB of local store (LS), we can not do sort last parallel rendering
by dividing triangles into groups, rendering the whole image by each SPE followed by a final image
composite. We adopted a tile based method that divides the image into tiles small enough to fit
the LS of each SPE. By assigning tiles to SPEs dynamically we can also improve load balancing
among the SPEs.

We were unable to achieve fast rendering performance on the Cell processor for a
large number of triangles. We believe that rendering is not an ideal problem for the
Cell processor and the small local store on the Cell limited our performance.

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 8 16 32 64 128 256

F
ra

m
e
s

P
e
r

S
e
co

n
d

Millions of Triangles

CPU - 1 thread
CPU - 2 threads
CPU - 4 threads
CPU - 8 threads

CPU - 16 threads
CPU - 32 threads
GPU - Longhorn

Figure 10: Rendering performance for massive numbers of triangles on Kratos and Longhorn.

●

●

●

●

●

●

10
15

20
25

30
35

3D Raycasting on RoadRunner Cell Blade

Number of triangles

fra
m

es
 p

er
 s

ec
on

d

21380 102416 161208 235840 322304

● 8 SPE Threads
16 SPE Threads

Figure 11: Single node 8 socket 32 core opteron machine.

12

4.2 An OpenGL API for the Manta Raytracing Engine

GLuRay is a program that intercepts OpenGL calls2 and produces a ray traced image matching
the OpenGL image which would otherwise be rendered. This method allows the utilization of
traditional visualization packages such as Paraview, VisIt and Ensight without modification. The
program works by making an equivalent change to the Manta ray tracer’s scene for each OpenGL
call. Figure 12 shows the use of GLURay with CEI’s Ensight on a simple sample dataset. Manta
rendering performance through the GLURay interface is very similar to the Manta performance
presented in Section 3.2.

Figure 12: Using Ensight with GLURay OpenGL Rendering API

State changes such as material properties and color information are tracked and updated to
produce identical images. Separate acceleration structures for ray tracing are built and updated
when calls to OpenGL display lists or vertex arrays are made. These acceleration structures are
updated asynchronously to the running application in a threaded manner resulting in minimal
overhead when no new geometry is being produced. Buffer swaps are mapped to the ray tracer’s
rendering routine causing the display of the last rendered frame and starts the rendering of the
next frame asynchronously. In addition GLuRay supports adding global effects such as ambient
occlusion, accurate shadows, reflections, refraction and other high quality rendering features which
can be enabled through an external GUI client. Currently GLuRay supports most basic polygo-
nal representations in the visualization packages mentioned however some issues such as multiple
viewports have not been implemented yet. Shader programs are also not implemented.

The GLURay OpenGL API is an experimental system (i.e. not production) but
offers a viable approach to achieve fast CPU rendering on multi-core supercomputing
platforms. If the ASC program is interested we recommend a discussion with CEI
Inc. about options for incorporating fast CPU-based rendering in their product.

2GLURay is similar to the Chromium rendering API [1].

13

4.3 High Fidelity Rendering on Large Shared Memory Machines

Ray tracing is the standard approach to produce photo realistic images. The simplicity of the ray
tracing algorithm makes it trivial to achieve realism. The algorithm casts a ray for each pixel and
determines the color of the first hit object, then it identifies its adherence to geometric optics, and
it takes into consideration the classical physics model of light transport (in which light rays bounce
and bend at reflective and refractive objects). Shadows, reflections, translucency, depth of field,
antialising and motion blur are all trivially computed in a ray tracer, by simply casting more rays.

We recommend interactive ray-tracing of additional datasets of interest to ASC pro-
gram with shadows and reflections to evaluate the improvement of the understanding
of 3D shapes. Large dataset sizes could be explored on shared memory machines, for
example a server with up to a half a terabyte of memory can be obtained today with
larger configurations available in the future.

5 Future Work

Since interactive rendering of approximately ten frames per second for massive triangle sized
datasets is already possible using current supercomputers, we believe interactivity will improve
on future supercomputers. Work that still needs to be done to accomodate visualization on the
supercomputer for production use includes maximizing single node performance for other parts of
the visualization pipeline like reading, isosurfacing, caculator operations and building acceleration
structures. Also, overlapping rendering and compositing would cause parallel rendering to be bound
by the greater time, either rendering or compositing, not the sum of the two as it is now.

6 Conclusion

In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our
tests. In addition, we evaluated CPU and GPU-based rendering performance. We encourage
production visualization experts to consider using CPU-based rendering solutions when it is appro-
priate. For example, on remote supercomputers CPU-based rendering can offer a means of viewing
data without having to offload the data or geometry onto a GPU-based visualization system. In
terms of comparative performance of the CPU and GPU we believe that further optimizations of
the performance of both CPU or GPU-based rendering are possible. The simulation community
is currently confronting this reality as they work to port their simulations to different hardware
architectures. What is interesting about CPU rendering of massive datasets is that for past two
decades GPU performance has significantly outperformed CPU-based systems. Based on our ad-
vancements, evaluations and explorations we believe that CPU-based rendering has returned as one
viable option for the visualization of massive datasets.

References

[1] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner, and
James T. Klosowski. Chromium: a stream-processing framework for interactive rendering on
clusters. ACM Transactions on Graphics, 21(3):693–702, 2002.

14

[2] Kwan-Liu Ma, James S. Painter, and Charles D. Hansen. Parallel volume rendering using
binary-swap compositing. IEEE Computer Graphics and Applications, 14:59–68, 1994.

[3] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting classification of
parallel rendering. IEEE Computer Graphics Applications, 14(4):23–32, 1994.

[4] Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. Sort-last parallel rendering for
viewing extremely large data sets on tile displays. Parallel and Large-Data Visualization and
Graphics, IEEE Symposium on, 0:85–92, 2001.

15

	L2-cover
	L2-paper

	laur #: 11-00494
	title: A Report Documenting the Completion of the Los Alamos National Laboratory Portion of the ASC Level II Milestone
”Visualization on the Supercomputing Platform”
	authors: 113788 James Ahrens CCS-7
148176 John Patchett CCS-7
194699 Li-Ta Lo CCS-7
David DeMarle Kitware Inc.
Carson Brownlee University of Utah
229505 Christopher Mitchell CCS-7
	submitted to: ASC Level II Milestone Meeting. August 13, 2010
	RESET:
	menu warning: NOTE: Use these buttons to print or save the form. DO NOT use the browser tool bar.
	save:
	print:

