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Abstract

A significant unsolved problem in scientific visualization is how
to efficiently visualize extremely large time-varying datasets. Us-
ing parallelism provides a promising solution. One drawback of
this approach is the high overhead and specialized knowledge of-
ten required to create parallel visualization programs. In this paper,
we present a parallel visualization system that is scalable, portable
and encapsulates parallel programming details for its users. Our
approach was to augment an existing visualization system, the vi-
sualization toolkit(VTK). Process and communication abstractions
were added in order to support task, pipeline and data parallelism.
The resulting system allows users to quickly write parallel visual-
ization programs and avoid rewriting these programs when porting
to new platforms. The performance of a collection of parallel visu-
alization programs written using this system and run on both a clus-
ter of SGI Origin 2000s and a Linux-based PC cluster is presented.
In addition to showing the utility of our approach, the results offer
a comparison of the performance of commodity-based computing
clusters.

Keywords: parallel, distributed, visualization, large data

1 Introduction

Scientists are using computer simulations to resolve models of real
world phenomenon, including models of the earth’s climate and
oceans and accelerator physics dynamics. With additional com-
puting power and algorithmic advances, these models have been
resolved to more detailed levels of resolution, increasing our un-
derstanding of the world around us. Key to this process is the vi-
sualization and analysis of simulation results. Simulations are usu-
ally run in parallel on clusters of high-bandwidth supercomputers,
such as SGI’s Origin 2000 series or clusters of PCs. The result-
ing datasets are so massive in size they require the use of parallel
computing resources of similar magnitude in order to effectively
visualize them. On a smaller scale, single desktop PCs are now
available with multiple CPUs. As both large and small scale par-
allel computing resources become commonplace for scientists, so
must a parallel visualization software system that effectively utilize
these resources.

A useful starting point for creating a parallel visualization system
to support these needs is to build upon an existing visualization
system, the visualization toolkit(VTK)[16]. The toolkit contains
many serial visualization, graphics and imaging algorithms and is
portable to a variety of hardware platforms and operating systems.
We had a number of goals for this system:

� Scalability - Scalability is the ability of a system to use in-
creasing numbers of computing resources to more efficiently
process large datasets. The system should support data paral-
lelism (i.e. when a large dataset is partitioned into indepen-
dent subsets that are processed in parallel) to achieve scalable
performance on datasets of massive size. It also should sup-
port pipeline parallelism (i.e. when a sequence of algorithms

executes in parallel on different data elements) to achieve im-
proved performance on a long time series.

� Portability - Portability is critical to users with access to het-
erogeneous platforms since platform availability can change
due to crashes, maintenance, purchases and removal. If the
user’s visualization system is portable then they can flexi-
bly choose the best available platform instead of being con-
strained only to the availability of a specific platform. The
system should be portable between platforms with different
operating systems and underlying hardware, including be-
tween shared and distributed-memory multiprocessors.

� Full functionality - The system should support most of the
functionality of VTK, offering parallel versions of the algo-
rithms available. Supporting a full range of parallel visual-
ization algorithms is critical to effectively processing large
datasets since the alternative, interspersing serial algorithms
with parallel algorithms can significantly degrade perfor-
mance.

� Abstraction of complexity for users and developers- Writ-
ing correct and efficient parallel programs is difficult for users.
The system should encapsulate parallel computing details in
order to simplify the creation of parallel visualization pro-
grams.

The next section describe related work in parallel visualiza-
tion algorithms and systems. It characterizes the three possible
types of parallelism available in parallel visualization systems: task,
pipeline and data parallelism. This paper contributes a design and
implementation for a parallel visualization system that supports
these types of parallelism on shared and distributed memory pro-
cessors. The next section describes the fundamental abstractions
neccessary to support parallelism (i.e. process and communication
objects) and a design for these objects that support demand-driven
data-flow execution semantics. Then we describe the addition of
each type of parallelism and present performance results for a par-
allel visualization application that uses each type.

2 Related Work

Previous approaches to visualizing large datasets using parallelism
include parallel visualization algorithms and systems.

Much of the previous algorithmic work in the field of parallel vi-
sualization has focus on the area of parallel rendering. Parallel ren-
dering approaches include photo-realistic rendering (i.e. ray trac-
ing, radiosity and particle tracing)[15], polygon rendering[2] and
volume rendering[18, 17]. Additional work has focused on parallel
isourfacing[6, 13] and geometry optimization[7]. These efforts are
complimentary to the our efforts since our goal is the creation of
a fully functional visualization system. Previous algorithmic work
can be integrated into the toolkit as modules further augmenting the
toolkit’s functionality for users.
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Figure 1: A sample data flow graph

Other related parallel data-flow based visualization systems
include IBM Data Explorer(DX)[4, 1], AVS Express[5] and
SCIRun[14]. In these data-flow based visualization systems we re-
fer to a unit of execution as a module. Each module has a set of in-
puts and outputs. Module inputs and outputs can be interconnected
so that the output of one module is passed as an input to another
module.

In a data-flow based visualization system there are three funda-
mental types of parallelism. The first type of parallelism is task
parallelism[3]. This type of parallelism occurs when independent
modules in the data-flow graph execute in parallel. Figure 1 shows
a data-flow program graph. The ovals denote modules and the con-
necting lines denote output and input connections between the mod-
ules. Task parallelism occurs in the graph shown in Figure 1, when
module A and B execute in parallel. The second type of parallelism
is pipeline parallelism. This type of parallelism occurs when a se-
ries of connected modules execute in parallel on independent data
elements. These elements are usually elements of a time series or
independent subsets of a single dataset. Pipeline parallelism occurs
in the graph shown in Figure 1, if module A, C and D execute in
parallel. The third type of parallelism is data parallelism. This is
when a module itself executes in parallel. Data parallelism occurs
in Figure 1, if module A executes in parallel, for example, if it reads
data in parallel.

Each type of parallelism is useful in different situations. Task
parallelism is useful for running program graphs with many inde-
pendent branches, such as those that implement parameter stud-
ies, in parallel. Pipeline parallelism is useful for processing time-
varying datasets with many independent resources, for example, si-
multaneously reading from disk, computing results and rendering
with graphics hardware. Data parallelism is useful for processing
large datasets. System models for achieving parallelism including
shared-memory and distributed-memory processes.

IBM Data Explorer is a data-flow based visualization system
providing numerous visualization and analysis algorithms for its
users. The DX software architecture relies on a centralized execu-
tive to instantiate, allocate memory and execute modules. DX sup-
ports threaded data-parallelism on shared-memory multiprocessors
and distributed task parallelism. Both mechanisms were designed
to support parallelism in the context of a centralized executive. For
example, task parallelism is achieved by a remote module that in-
forms the executive it is ready to execute and waits for a signal from
the executive before continuing.

SCIRun is a data flow based simulation and visualization sys-
tem that supports interactive computational steering. SCIRun
provides threaded task and data parallelism on shared-memory
multiprocessors[8]. An extension to SCIRun permits distributed-

memory task parallelism[12]. SCIRun also uses a centralized exec-
utive and in this way is similar to Data Explorer.

AVS is another popular data-flow visualization system that pro-
vides a similar parallel architecture and support. A prototype ex-
tension supported data parallelism on the CM-5[9].

A speculation as to why these systems evolved with a centralized
executive is they all provide a tightly integrated programming en-
vironment that supports the interactive construction, execution and
debugging of programs via a graphical user interface. The existence
of a single point of control for program construction and execution
(i.e. the GUI) may have lead to the creation of a related central-
ized executive. Designing an efficient mechanism for controlling
large number of processes from a single centralized executive is
difficult. In contrast to these systems, the parallel visualization sys-
tem described in this paper avoids the use of a centralized execu-
tive and therefore provides a more scalable solution. A distinguish-
ing feature of our system is its seamless support for task, data and
pipeline parallelism on both distributed and shared memory multi-
processors.

3 Supporting multiple processes

In data-flow based visualization systems, visualization programs
are constructed by instantiating modules and connecting their in-
puts and outputs together to form a data-flow program graph. Once
created, a program graph is placed in a persistent update state. In
this state, when an update request is made, modules in the program
automatically execute if their input data is out of date. Automatic
updates let users avoid writing program specific update routines,
such as, specific system code for automatically loading the elements
of a time series or code for deciding which modules to execute af-
ter a program parameter change. Implementing automatic program
updates requires the support of a number of additional services:

� the ability to share data between modules

� the ability to run a program persistently

� the ability to execute module methods

Most of these services are trivial to provide for serial programs
but are a challenge to provide for parallel programs.

This section describes how these services are implemented with
multiple processes and how the implementation achieves our goals
of portability and abstraction of complexity. Our approach to de-
signing and building our parallel visualization system was to aug-
ment VTK. To support parallelism, the first step was to add asystem
process object1. The object abstracts whether the system process is
a distributed (via MPI) or shared-memory process (via pthreads or
sprocs2). The programmer can select the process type at run-time
when the process is instantiated.

3.1 Sharing data between modules

Data sharing between modules is required to implement data-flow
semantics. In a serial program, data sharing is achieved via a lan-
guage mechanism such as a pointer or a direct reference. The par-
allel visualization system described in this paper is written in C++,
as is VTK. Data sharing between modules that reside in different

1This should not be confused with the process object currently in VTK.
The system process object that is being added provides an abstraction of a
unit of execution. The existing process object in VTK is a data processing
object.

2A SGI-specific shared-memory process library.
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processes is not directly supported in C++. Therefore communi-
cation methods were added to the system process object to sup-
port data sharing between modules in different processes. These
methods implement data sends and receives between processes of
all VTK data structures. For efficiency, two different implemen-
tations, one for communicating between distributed-memory pro-
cesses and one for communicating between shared-memory pro-
cesses were created. Encapsulating the communication methods
in the system process object supports program portability between
shared and distributed-memory multiprocessors. Two issues must
be addressed in the implementation of the communication methods:
process synchronization and data sharing.

With distributed-memory processes, synchronization is achieved
by using an underlying message passing package, in the current
implementation, MPI. Data structures must be converted to a con-
tiguous memory representation in order to be passed as messages
between processes. There are a number of different data struc-
tures that are part of VTK’s data model including data structures
for structured points and grids, unstructured grids and graphic ele-
ments. A contiguous representation is created when these structures
are written to and read from a file. In VTK, file streams from the
C++ iostream library are used to perform file I/O. The iostream li-
brary also supports string streams. All data structure reader and
writer objects were extended to read and write strings in a binary
format in addition to files. In the sending process, the VTK object
to be sent is written to a string, the string is then sent as a mes-
sage to the receiving process. In the receiving process, the message
is received and a VTK object is instantiated by reading from the
string.

With shared-memory processes, synchronization is achieved by
a locking mechanism that forces the sending process to wait until its
message is received. Data sharing is achieved by making a shallow
copy of the shared data object.

3.2 Program persistence

In a serial program, program persistence is usually implemented
via the program’s interactive event loop. The event loop is started
as the last statement of the program. It continuously waits for user
events (such as mouse and keyboard presses) and responds with
pre-defined functions. In a parallel program, most processes do not
contain an interaction driven event loop. Instead, a wait method was
added to the system process object. The last executable statement
in each process calls this method. The wait method contains code
to receive messages, respond to remote method invocations and up-
date requests from other processes. The method does not exit until
receiving a completion message. With this method, parallel pro-
grams can be placed in a persistent state. This solution is scalable,
since each process asynchronously responses to incoming requests
without coordination with a centralized controller.

3.3 Executing module methods

Another useful service is the ability to modify module parameters
of an executing program. For example, the user may wish to in-
teractively change an isosurface value. In a serial program, this is
accomplished by invoking a module method. In a parallel program,
modifying module parameters is more complex because modules
reside in different processes. Therefore the system process object,
also provides a remote method invocation service. Each process
registers module methods that can be invoked by a remote process.
These methods are assigned unique tags. When a program is in a
persistent state, a remote process with these tags can invoke these
methods.

0 void module::Update() {
1
2 For each input {
3 this->input->Update();
4 calculate latest_input_modified_time;
5 }
6
7 if (this->modified_time <
8 latest_input_modified_time) then {
9 this->Execute();

10 this->modified_time =
11 get_latest_modified_time();
12 }
13 }

Figure 2: Pseudocode for Module Update Method

3.4 Automatic program update via demand driven
data-flow semantics

The parallel visualization system supports the demand-driven data-
flow execution semantics of VTK. These semantics are imple-
mented as follows: each module contains a update method and an
execute method. When run, a module’s update method requests
the update of each of its inputs to ensure that they are up to date.
These in turn make recursive calls to ensure their inputs are up to
date. Once the update calls return indicating its inputs are up to
date, a test is made to see if the module’s execute method needs to
be called. The module’s execute method is called if its inputs have
been modified. The system tracks modified times via a timestamp
mechanism. Figure 2 presents a pseudocode listing of the update
mechanism.

In a serial program, implementing the update method described
above is straightforward. In a parallel program, a number of issues
arise:

� Propagatingupdates– In a parallel program, update requests
need to propagate between modules that reside in different
processes. Thus, the remote invocation service is used to han-
dle these requests.

� Propagating module outputs– In a parallel program, mod-
ules in different processes share input/output data. Thus
the communication methods are used to provide data sharing
across process boundaries.

� Modified times – Modified times are tracked via a global
counter in each process. Thus, comparing timestamps from
different processes is meaningless. To address this issue, the
parallel update protocol sends a local timestamp (from the up-
dating process to the requesting process) when an input is up-
dated. This timestamp is stored by the requesting process and
sent back to the updating process when the next update oc-
curs. Since the timestamp originated in the updating process,
it is a valid timestamp and can be used to test whether the
requesting process’s input is up to date.

The ability to connect modules across process boundaries is im-
plemented as aport object. When a user wants to connect modules
that reside in different processes they connect an output port mod-
ule as the last module of the first process and then connect an input
port module as the first module of the second process. Port objects
encapsulate the services need to support demand driven updates be-
tween processes. In the future, a port object will be used for all

3
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module connections and incorporated into the module object def-
inition. Thus, users will no longer need to explicitly create port
objects.

In summary, process and port objects allow users to write
portable visualization program graphs that execute in multiple pro-
cesses. Additional functionality needs to be added to exploit task,
data and pipeline parallelism.

4 Supporting parallelism

This section describes how support for task, pipeline and data par-
allelism was added. For each type of parallelism, a visualization
application is presented. These applications visualize the results
of ocean and galactic dynamics simulations. The applications are
run on the nodes of an SGI Origin 2000 cluster and a PC cluster.
The Origin cluster contains 16 128-way shared-memory multipro-
cessors. The processors are MIPS R10000s running at 250 Mhz.
Note these processors can issue two instructions per cycle. Each
multiprocessor runs Irix 6.5, has 32 GBs of shared memory, and is
connected via a HIPPI network to other nodes in the cluster. The
PC cluster contains 128 dual processor personal computers. Each
proccesor is a Pentium III running at 500 Mhz. Each PC runs Linux,
has 1 GB of memory and is connected via a Myrinet network to the
other nodes in the cluster.

4.1 Task parallelism

Task parallelism occurs when independent modules execute in dif-
ferent processes. Task parallelism is useful for running program
graphs with many independent branches. The update method de-
scribed in the previous section does not permit task parallelism be-
cause a module’s inputs, and thus the processes they connect to, are
updated serially (i.e. see lines 2-4 in Figure 2). To solve this prob-
lem, an asynchronous process invocation loop is prepended to the
module update method. The loop makes an asynchronous update
request on each input. When an input port object receives such a
request it sends a message to its corresponding output port object
to asynchronously start the update sequence within its own process.
Process synchronization occurs as part of the input port object’s in-
put update loop (i.e. lines 2-4 in Figure 2). The input port’s update
call to its corresponding output port blocks until the output port’s
process has completed its update sequence.

Visualizing ocean currents using task parallelism Many
visualization programs consist of a collection of independent tasks.
For example, scientists are interested in a number of techniques
to study patterns of flow in the Atlantic ocean including glyphs,
streamlines and probing. The ocean simulation dataset is a time
average result from the Parallel Ocean Program(POP). Field vari-
ables in the dataset include salinity, temperature and velocity vec-
tors. The POP dataset is 1280 by 896 by 128 and a subset of the
dataset that contains just the Altantic Ocean is 250 by 300 by 128.
In this example, the first process reads and probes the temperature
field. The probed surface is clipped to remove invalid values. The
second process is used to read the salinity field, shrink it in size, and
then generate an isosurface of the ocean floor. The remaining three
processes read and process the velocity vector field. The third pro-
cess runs a streamline integration. The fourth process extracts areas
where the vertical flow component is large. The fifth process uses
a divergence filter to show turbulent flow. The resulting geometry
from the processes is sent to the first process for software rendering.
Figure 3 shows the program graph. Note the boxes in the diagram
represent processes. Also the input and output port modules have
been omitted from the program graph diagram for brevity.
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Figure 3: Task parallelism graph

The parallel implementation of this program graph uses five pro-
cesses to perform these five tasks. Table 1 presents the performance
results for one and five processors on the PC cluster using MPI.
Color figure 8 presents the results computed by this graph.

Table 1: Performance of task parallel graph in seconds

1 processor 5 processors Speedup
PC Linux 23.03 6.77 3.40

4.2 Pipeline parallelism

Pipeline parallelism is useful for processing a dataset with inde-
pendent computing resources, that is, simultaneously reading from
disk, computing results and rendering with graphics hardware. In
order to exploit pipeline parallelism the dataset must be a time se-
ries or partitionable into independent subsets.3 The independent
elements of the dataset are then streamed thorough each process.
To clarify a formal description of pipelining is:

� Let npes be the number of processes. Define a sequence of
connected processesPpid wherepid = 0; : : : ; (npes�1) and
whereP0 contains source modules andP(npes�1) contains
sink modules.

� Let ndes be the number of data elements. Define a sequence
of data elementsDid whereid = 0; : : : ; (ndes� 1).

� Define a collection of process resultsD0

(id;pid) whereid is
the id of the data element this result originates from (i.e.
D0

(id;0) = Did) andpid is id of the process that generates
this result.

� Define a sequence of update requestsi where i =
0; : : : ; ((ndes� 1) + (npes� 1)).

� When using pipeline parallelism, for theith update request,
processPpid creates resultD0

(index;pid) where index =

(i � pid) when (0 � index � (ndes � 1)): If pid > 0
then processPpid usesD0

(index;pid�1) as input to compute
D0

(index;pid).

3Data partitioning schemes are described in section 4.3.
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Table 2: Example Multiprocess Program

Request 0 Request 1 Request 2
Process 0 D0

(0;0) D0

(1;0) D0

(2;0)

Process 1 D0

(0;1) D0

(1;1) D0

(2;1)

Process 2 D0

(0;2) D0

(1;2) D0

(2;2)

Time 1 2 3 4 5 6 7 8 9

Table 2 presents an example multiprocess program that does not
make use of pipeline parallelism. Table 3 presents what happens
when the same program makes use of pipeline parallelism. For
simplicity in the example, assume each process contains one mod-
ule that takes exactly one time unit to generate a result.

Table 3: Example Multiprocess Program using Pipeline Parallelism
Req. 0 Req. 1 Req. 2 Req. 3 Req. 4

Process 0 D0

(0;0) D0

(1;0) D0

(2;0)

Process 1 D0

(0;1) D0

(1;1) D0

(2;1)

Process 2 D0

(0;2) D0

(1;2) D0

(2;2)

Time 1 2 3 4 5

With standard demand-driven data flow update semantics and
multiple processes, processes are idled in their process execution
loop after they fulfill an update request. For example, notice in Ta-
ble 2 that each process idles two time units before computing its
next result. Using pipeline parallelism avoids this inefficiency. For
example, note the completion of the programs in Table 2 and 3.
The program that uses pipeline parallelism (i.e. the program shown
in Table 3) completes in approximately half the time of the program
that does not (i.e. the program shown in Table 2). Pipeline paral-
lelism is implemented by changing the update behavior of the port
objects. To implement pipeline parallelism, the update method of
the output port runs as usual. This is followed by a recursive call to
its update method. This second update call causes the output port’s
process to run in parallel with it’s requesting process and creates
the next result that will be requested. Thus, when the next update
request is made, the requested result may be immediately available
for use. For example, in Table 3, during update request 1, the first
update call to the output port in process 0 delivers the previous com-
puted resultD0

(0;0) to process 1. The second recursive update call to
the output port causes process 0 to create resultD0

(1;0) concurrently
while process 1 creates resultD0

(0;1).
When shared-memory processes are used with pipeline paral-

lelism the input port cannot share the data result with the output port
because the output port needs a different location to write its result.
In the current implementation, the input port makes a deep copy
of the output port’s result. This is not a problem with distributed-
memory processes since sending the object as a message forces a
copy of the object to be made.

Table 4: Performance of pipeline parallel graph in seconds

1 processor 3 processors Speedup
SGI sprocs 270.77 193.59 1.40

Table 5: Average performance of the modules in the pipeline paral-
lel graph in seconds

Read Glyph Render
and Write

1 processor - SGI sprocs 0.04 3.20 3.27
3 processors - SGI sprocs0.05 3.35 4.37

Read_Particles

Glyph

Render

Write_Image

Figure 4: Pipeline parallelism graph

Using pipeline parallelism to efficiently process a time-
varying galactic dynamics dataset Pipeline parallelism
provides a means for executing independent computing resources
such as disks, compute nodes and graphics hardware in parallel.
Figure 4 shows a program graph that uses these resources to vi-
sualize the results of a galactic dynamics simulation. The galaxy
simulation dataset is a time series result from a simulation of for-
mation of a galaxy. Each series element contains the position of a
50,000 stars and there are 45 series elements. A time series element
is read in the first process, glyphed in the second process (i.e. col-
ored geometry is placed at each star’s location) and this geometry is
rendered using an SGI InfiniteReality (IR) graphics pipe and the re-
sulting image written to a file in the third process. Table 4 presents
the performance results for one and three processes on the SGI Ori-
gins 2000s using sprocs (a SGI-specific shared-memory process im-
plementation). Table 5 presents the average time of each process to
generate a result.
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Figure 5: Data parallelism graph

4.3 Data parallelism

Data parallelism is useful for processing extremely large datasets.
With data parallelism, a large dataset is partitioned into many inde-
pendent subsets that are processed in parallel. The implementation
of data parallelism does not require any additional changes to the
toolkit. To write a program that expresses data parallelism:

� copies of the same modules are run in each process

� these data parallel modules process independent subsets of
data

� the results of the last data parallel module are usually merged
to create a single process result

Data is partitioned into independent subsets using the visualiza-
tion toolkit’s streaming data model[10]. Streaming is the ability of
a sequence of modules to process an independent subset of data.
This data model supports:

� data separability - the ability to break data into independent
pieces

� mappable input - the ability to determine what portion of a
input data is required to generate a requested portion of the
output data

� result invariance - the ability to return the same answer re-
gardless of the number of pieces requested

In a data parallel program, a sequence of modules is replicated in
each process. The user starts a data partitioning, by requesting that
each process compute a portion of the entire output data of the last
module in the sequence. Then an update request is issued in each
process. In parallel, the requests are propagated up the sequences,
with each module along the way identifying which portion of the
input data is needed to compute the requested portion of the output
data. Thus, the update request mechanism induces a data partition-
ing on each data parallel module’s input and output data.

Structured data can be partitioned into topologically connected
sub-blocks. A module mapping from output to input can add
boundary elements. For example, an isosurface module which com-
putes normals and gradients adds a boundary size of two in each di-
mension to its request. Copies of the boundary elements are made

to fulfill these requests. Unstructured data is partitioned as follows:
each partition containsn=p unstructured grid elements, wheren is
the unstructured grid elements andp is the number of processes.

Data parallel modules are usually followed by a data parallel
merge module that gathers the independently computed result of
each module and merges them into a final result on a single pro-
cessor. An example of a merge module is an image compositing
module that inputs a z-buffer and image pair from each process and
outputs a single composited result image to process zero. Another
example is polygon compositing module that inputs a polygon list
from each process and outputs a single concatenated list to process
zero.

An assumption of the scheme is that the data parallel source
module, such as a data reader, can provide the requested data. This
implies either global access to any input data by the source modules,
via a shared filesystem or global parallel algorithm for example, or
additional coordination between the requesting module and source
module, so that the requesting module only asks for data that can
be provided by its associated source module.

Visualizing isosurfaces of ocean salinity colored by tem-
perature using data parallelism Ocean scientists are inter-
ested in visualizing isosurfaces of varying levels of ocean salinity
colored by temperature from the POP global ocean simulation. The
simulation grid size is 1280 by 896 by 128 levels. Figure 5 show a
data parallel program graph which computes and colors these iso-
surfaces. A program graph reads the salinity field and isosurfaces
the result. Then it reads the temperature field and colors the iso-
surface based on the temperature. The isourface is then rendered
using a software renderer and the resulting image is composited
with other image results using a sort-last binary swap composit-
ing algorithm[11]4. In addition, an isosurface of the ocean floor
is created using the temperature field data and rendered as well.
The dataset is partitioned to the processors using the method de-
scribed in this section. Color Figure 10 provides a visual example
of block partitioning of the ocean data, by showing the isosurface
of the ocean floor colored by processor id which generates it. Color
Figure 11 shows a salinity isosurface at the value of 0.034375. The
center of the Figure 11 is the Pacific Ocean, with the Altantic Ocean
on the right of the image and Indian ocean on the left. Note the

4Due to a bug in communication infrastructure of the PC cluster, binary-
tree based compositing was used for 64 and 128 processors.
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Figure 6: Performance of a data parallel isourfacing program using
MPI on a PC cluster
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Figure 7: Performance of a data parallel isourfacing program using
MPI on a SGI Origin 2000 cluster

continents are the blank regions in the image since there is no sim-
ulation data associated with these regions. To fully understand the
performance of this application it is important to note that the salin-
ity and temperature field reads and the isosurface of the ocean floor
occur only once but the isosurface and coloring of the salinity field,
the rendering of the salinity and ocean floor isosurface, and com-
positing occur forty times for different salinity isosurface values.
Figure 6 shows the performance results of running this data parallel
program using MPI for communication on a PC cluster using 2 to
128 nodes. Note that although each node in the PC cluster is dual
processor machine only a single processor was used in these runs
since this results in the best machine performance. The results show
a significant speedup from 2 to 128 processors.5

This data parallel program was also run on the 128-way Ori-
gin 2000 clusters using from 1 to 256 processors.6 Figure 7 shows
these results. Note the performance trends are very similar to the
PC results. The performance tapers off at around 128 processors
due to load balancing issues. Specifically, since we are using a
block partitioning scheme, the blocks that reside on continents do
not contain any data and therefore generate no geometry to render.
Thus the performance of the rendering module is unbalanced. Fu-
ture work will look at reducing load imbalancing, in a general way,
within the described parallel visualization system. On the Origins,
a significant speedup was also obtained. The program took over 2
hours on a single processor but only about 3 minutes on 256 pro-
cessors. These results validate the data parallel performance of the
parallel visualization system described in this paper. For additional
insight, Table 6, shows the total program time on the PC and SGI
clusters. Note that the PC cluster is more efficient than the SGIs
for the same number of processors in all cases. Although this is
a single performance result, it lends weight to the argument that
for message-passing applications, expensive shared-memory multi-
processors do not provide a benefit and will be replaced by lower-
cost PC clusters.

4.4 Discussion

At the beginning of the paper, we enumerated a set of goals we
wished to achieve with this system.

� Scalability - The results for task and pipeline parallelism
show the system can increase performance on a small num-
bers of processors/resources. The data parallel results vali-
date the scalability of this approach for large datasets. In the
future, combining task, pipeline and data parallel approaches
will lead to even greater performance gains.

� Portability - The results in this section were obtained on both
a shared and distributed-memory parallel architecture. On
the Origins, a shared-memory version of the pipeline parallel
application significantly out-performs a distributed-memory
version showing the system can successfully customize an ap-
plication for a shared-memory architecture.

� Full Functionality - The programs shown in this section im-
plement a range of functionality include visualization of flow,
particles and isosurfaces. Given the system described in this

5The single processor result on the PC cluster did not complete because
the program needed more than the available memory on the machine. Al-
though data streaming is possible the overhead associated with it could in-
flate the apparent speedup achieved with more processors and therefore the
single processor result was omitted.

6Using MPI was required, since for the 128 processor test, 64 processors
on two Origin 2000s were used and for the 256 processor test, 64 processors
on four Origin 2000s were used.
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Table 6: Performance comparison of data parallel isosurfacing program run on PC and SGI clusters (time in seconds).

1 2 4 8 16 32 64 128 256
processor processors processors processors processors processors processors processors processors

PC MPI 2805.24 1592.54 856.45 563.51 358.39 207.97 164.22
SGI MPI 7644.82 3754.54 2087.02 1201.62 701.43 406.50 257.34 182.97 163.24

paper is integrated as part of an existing full featured visual-
ization system additional functionality is available. For exam-
ple, the system implements a number of data parallel visual-
ization algorithms for scalar, vector and tensor fields includ-
ing glyphs, cutting, clipping, probing, smoothing, threshold-
ing, segmentation and morphology.

� Abstraction of complexity for users - The programs used in
the section are hundreds of lines long. This size is reason-
able for the functionality and performance provided. There
is an overhead associated with writing parallel programs (i.e.
the extra lines required to define ports and processes). In the
future, we plan to integrate ports into the module object defi-
nition so that a user can avoid having to explicitly define these
objects.

5 Conclusions and Future Work

This paper presented a design and implementation for a parallel vi-
sualization system that is scalable and portable. A set of result pro-
grams demonstrate the utility of this approach as well as lending
weight to the argument for message-passing programs, PC clusters
are significantly more cost-effective than shared-memory multipro-
cessors. Future work will address additional efficiency improve-
ments to the system, such as load balancing and explore automatic
parallel visualization program construction and optimization via a
scheduler.
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Figure 8: Streamline and vector glyphs showing flow patterns in the
Altantic Ocean - The blue glyphs show regions of flow with a large
vertical component. The orange glyphs show regions of turbulent
flow. The probe plane on the left is colored by temperature.

Figure 9: Galactic dynamics simulation result - Star positions col-
ored by energy, using a red to blue colormap where red is low en-
ergy and blue is high energy.

Figure 10: An isosurface of the ocean floor colored by processor id

Figure 11: An isosurface of a salinity value of 0.034375 colored by
temperature
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