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Figure 1: Top: Colormaps that provide counter examples to the hypotheses that monotonicity in an attribute implies intrinsic order.
Left to right: Monotonic in hue, saturation, and luminance. Bottom: Local triangle side differences below zero indicate locations that
violate intrinsic order. Images generated via [9].

ABSTRACT

One of the most important properties that inherently defines a good
colormap is perceptual order. In the literature, we find a wide range
of recommendations and hypotheses regarding order. Properties
such as monotonicity in luminance, saturation, or hue are/are not
stated as necessary/sufficient to ensure perceptual order. In this
paper, we gather the most common statements about perceptual
order and, when possible, prove or disprove them.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Colormapping; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Important properties of a colormap often depend on the task and
data type. Discriminative power may be most important to highlight
subtle features or differences in the data. Uniformity in a colormap
allows a scientist to find features of interest regardless of where they
may fall in the data.

Perceptual order is another important colormap characteristic and
itself comes with varying attributes. Order can occur locally or
globally. It can be directed or undirected. It can be considered an
intrinsic property or, alternately, something that only has meaning in
the context of a visible legend. Given the many facets of perceptual
order, it is not surprising that colormapping literature is full of
recommendations, exhortations, and conflicting advice on how best
to achieve perceptual order when developing a colormap.

In this paper, we collect the many hypotheses relating to percep-
tual order from the body of related work. Where possible, we prove
or disprove these hypotheses based on the mathematical framework
developed in Bujack et al. [8]. We do not attempt to determine
whether order is relevant or critical for a specific task or data. Our
approach is agnostic to such specifics and simply seeks to mathe-
matically validate or rule out the many hypotheses involving order
that can be found in the color literature.
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2 RELATED WORK

The importance of order for the design of a good colormap for data
that is itself ordered has been stressed throughout literature. Sloan
and Brown [27] state as far back as 1979 that a colormap should
consist of colors that have an order that can be remembered easily.

Wainer and Francolini [29] stress the importance of order within
a retinal variable. They consider size, length, density, and darkness
to be ordered and point out that it is difficult to order colors solely by
hue even though colors have a natural order in the spectrum. They
also mention that saturation can be used to reflect order.

Trumbo [28] agrees that a good univariate colormap should have
order in one of the retinal variables or their combinations, by which
he refers to hue, saturation, and brightness.

Pizer at al. [18, 19] state that natural order can be achieved by
increasing monotonically in brightness and each of the RGB compo-
nents, such that the order of their intensities does not change through-
out the colormap. They consider the grayscale and the heated body
map as naturally ordered while a rainbow scale is not ordered, even
if it is monotonic in brightness. They further suspect that a colormap
that suffices natural order must at least be monotonic in brightness.

Ware [30] points out that a monotonic change in luminance is
important to see the overall form of the data (qualitative task). On
the other hand, he stresses the significance of non-monotonicity in
at least one color-opponent channel, to read the underlying values of
the data (quantitative task).

Levkowitz and Herman [15] disagree with Pizer in that mono-
tonicity in brightness, RGB and their mutual order is not sufficient
to guarantee order. They additionally require monotonicity in hue
and constancy in relative saturation. Following these restrictions,
they generate 72 colormaps transitioning from black to white and
find that the longest one is 5.8 times the length of the grayscale.

Brewer and Harrower [6,7,12] suggest that, to avoid confounding
attributes, perceptual progression should relate to progression in
value. They use monotonicity in luminance, but not in saturation.
Their maps show decreasing saturation towards both ends with a
saturation maximum somewhere in the middle depending on hue to
increase discriminative power. They allows changes in hue as long
as they do not dominate over the lightness change and state that it is
possible to go through the whole circle without violating this rule.

Rogowitz and her many collaborators [2, 14, 21–25] distinguish
different tasks, data types, and data frequency and recommend col-
ormap properties for each combination. For the isomorphic task,
i.e., faithfully reflecting the structure of the underlying data, they



recommend equal visual importance, perceptually even spacing,
smoothness, and monotonically increasing luminance, saturation, or
hue and warn about using the rainbow colormap.

Green [11] summarizes Bertin’s principles [3], including that
the grayscale is ordered and that monotonicity allows order but not
quantitative comparisons. Green explicitly notes that though hue
does not have a global order, it does over small ranges.

Rheingans [20] summarizes previously suggested rules. She
agrees that the grayscale is ordered while the rainbow is not.

Borland and Taylor [5] focus on analyzing the flaws of the
rainbow. They explicitly apply a thought experiment drawn from
Ware [31] to illustrate the problem of ordering four colors drawn
from the spectrum, but also recognize that humans are able to sort
the hues correctly if the range is small. Further, they state that
changes in luminance are a strong cue indicating order and that the
grayscale and the heated body map are perceptually ordered.

Wijffelaars et al. [32] state that lightness produces order while
monotonicity in saturation is not necessary, because the color scales
suggested by Brewer [6,7] do not fulfill this criterion. They also men-
tion that Brewer’s colormaps do not increase linearly in CIELUV’s
luminance, but do not go as far as explicitly stating that this is not a
necessary requirement, as they did for the saturation.

Moreland [17] also stresses the importance of order. He designed
the red-blue diverging colormap that has replaced the rainbow as the
default in the visualization tool ParaView [1].

Borland and Huber [4], on the other hand, have a more controver-
sial opinion. They advocate for sacrificing traditional rules such as
order if necessary to address the needs of the application scientist.

Bujack et al. [8] collect the different ways in which authors use
the term order. They distinguish local vs. global, intuitive vs. easy to
remember vs. legend-based and directed vs. undirected perceptual
order and assign a mathematical formula to unambiguously define
the terms when possible.

3 HYPOTHESES

As seen in the related work, the recommendations gathered here
span a range of predictions for what is necessary and/or sufficient
to ensure order. Almost all authors working on the topic agree that
there is a strong correlation between monotonicity in luminance and
order. In particular, a colormap should be monotonic in luminance
to encode order and non-monotonic in luminance if the underlying
data is not ordered [2,6,7,12,14,20–25]. Far more rarely do authors
explicitly state that a specific property is necessary or sufficient.
Not all statements rise to the level of a verifiable hypothesis. We
summarize the statements that are assertive enough to be hypotheses.

• The grayscale (brightness, luminance) has perceptual order
[5, 11, 18–20, 27, 29].

• Saturation has perceptual order [11, 29].

• Hue has local order [5, 11, 28].

• Hue has no global order [5, 11, 12, 18–20, 28, 31].

• Monotonicity in luminance is necessary for order [18, 19].

• Monotonicity in luminance is sufficient for order [4, 16, 32].

• Monotonicity in luminance is not sufficient for order [15, 18,
19].

• Monotonicity in hue is not sufficient for order [15, 18, 19].

• Monotonicity in luminance, RGB, and their order is sufficient
for natural order [18, 19].

• Monotonicity in luminance, RGB, and their order, hue, and
saturation is sufficient for natural order [15].

• Monotonicity in saturation is not necessary for perceptual
order [12, 18, 19, 32].

• Strict monotonicity in saturation is not necessary for perceptual
order, but constancy [15].

4 THEORY

In this section, we will attempt to prove or disprove the validity of
the above hypotheses. Table 1 summarizes these hypotheses along
with the results of our investigation. We begin by recapping the
necessary theoretical foundations.

4.1 Foundations
For the concept of a colormap and the differences between colors
to make sense, we assume that the color space is a 3D metric space
that is path-connected.

A path between x,y ∈C is a continuous map γ : [0,1]→C with
γ(0) = x and γ(1) = y. The length of a path is defined as

L( f ) = sup
0=t0<...<tn=1

n

∑
i=1

d(γ(ti)− γ(ti−1) (1)

The principle of diminishing returns [13] makes the space not con-
vex, especially not a length metric space. That means that the length
of a shortest path in general does not coincide with the distance
between its endpoints. All Riemannian metric spaces are length
metric spaces.

For the concepts of monotonicity in hue, saturation, or lumi-
nance to be defined, we assume that the latter three uniquely assign
a real value to each point in the color space h,s, l : C→ R. We say
that a path through color space γ : [0,1]→C is strictly monotonic
w.r.t. a real-valued function f : C→ R if

∀ti < t j ∈ [0,1] : f (γ(ti))≶ f (γ(t j)). (2)

Even though most authors do not explicitly specify whether they talk
about monotonicity or strict monotonicity, we will use the concept of
strict monotonicity throughout the paper and omit the word strict for
brevity. Otherwise, a colormap that consists of one color only could
always serve as a trivial counter example. Also, we will assume
that all points that are chosen to evaluate order are at least one just
noticeable difference (JND) [10] apart to avoid meaningless but
generally possible counter examples.

We define the luminance, saturation, and hue maps as a col-
ormap that monotonically changes in the named attribute and is
constant w.r.t. to the other two. We will further follow Schrödinger’s
assumptions that the luminance and saturation maps lie on shortest
paths in the color space [26]. Please note that the classical rainbow
map does not fall into this definition of hue map because it varies in
luminance. The luminance map is also called grayscale.

Figure 2: An example of how intuition can vary by culture (left to right):
heated body colormap, German flag, Belgian flag.

We make use of the definitions and distinction of order from
Bujack et al. [8]. In their framework, a colormap is considered to
satisfy order if, given a set of colors picked from the colormap,
everybody sorts them in the same way. They distinguish intuitive
from legend-based, i.e., either the sorting is performed without, or
with access to the legend; and local from global, i.e., the sample
points are chosen either consecutively or arbitrarily distant. We
will use the term intrinsic instead of intuitive because it describes
the intrinsic property of a color space. Intuitive order as used by
many authors cannot be captured in a single color space because
intuition differs between individuals. For example, Fig. 2, due to the
association with their flags, a German would likely agree that the



Figure 3: Illustration of local vs. global legend-based order, Equa-
tion (3) (left to right): local and global; local but not global; neither
local nor global.

heated body colormap is ordered, while a Belgian would probably
sort black-yellow-red.

They correlate legend-based order, Fig. 3, to the invertibility of
a colormap, i.e., a colormap suffices legend-based order if it does
not pass through the same point twice and local legend-based order
as long as two neighboring colors do not coincide:

∀ti 6= t j ∈ [0,1] : γ(ti) 6= γ(t j). (3)

Further, they assume a colormap suffices intrinsic order if the dis-
tance of the two outer colors is larger than their respective distances
to the one in the middle. A visualization of this concept can be found
in Fig. 4(a); the corresponding mathematical formulation is

∀ti < t j < tk ∈ [0,1] :
∆E(γ(t j),γ(ti))< ∆E(γ(tk),γ(ti))> ∆E(γ(tk),γ(t j)).

(4)

We will adapt these global definitions (3), (4) throughout the paper.
The local analogues are derived by setting ti = t j−∆t, tk = t j +∆t.

xi

xj

xk

�E(xk � xj)

�E(xk � xi)

(a) (b)

Figure 4: (a): Intrinsic order based on the triangle side difference,
Equation (4). The dark gray area suffices order w.r.t. the outer points.
(b) Intrinsic order on partial hue maps as in Theorem 5.

4.2 Legend-Based Order
The next Theorem shows that all hypotheses that identify monotonic-
ity as sufficient for local and global legend-based are true.

Theorem 1. A colormap γ : [0,1]→C that suffices strict monotonic-
ity w.r.t. a real-valued function f : C→ R suffices local and global
legend-based order.

Proof. From strict monotonicity follows that ∀ti 6= t j ∈ [0,1] :
f (γ(ti)) 6= f (γ(t j)), which implies ∀ti 6= t j ∈ [0,1] : γ(ti) 6= γ(t j)
and therefore legend-based order in its local and global sense.

Since the grayscale and a saturation map are shortest paths, the
fact that they suffice local and global legend-based order follows
from the fact that a shortest path is invertible.

Theorem 2. A shortest path between two points suffices legend-
based order.

Proof. Assume that there is a shortest path that visits the same point
twice, we can drop everything between these two visits and one of
the two occurrences of that point and produce a path between the
same endpoints. It follows from the identity of indiscernibles that
this path is shorter, which contradicts the assumption. That means a
shortest path must satisfy legend-based order.

4.3 Intrinsic Order of Grayscale and Saturation Map
Since the grayscale and a saturation map are shortest paths, the
question of whether they suffice local and global intrinsic order
translates mathematically to the hypothesis that the shortest path
between two points xi,xk lies within the ball of radius ∆E(xi,xk).

This hypothesis is true for any color space known to the authors.
In a length metric space, which includes Riemannian spaces, the
assertion also holds.

Theorem 3. In a length metric space, the shortest path between two
points xi,xk lies within the ball of radius ∆E(xi,xk).

Proof. In a length metric space, the shortest path between xi and
xk has length ∆E(xi,xk). If x j lies on this path, then xi,x j,xk is a
segmentation of the path as in Equation 1 with length ∆E(xi,x j)+
∆E(x j,xk). The length of this path is the supremum over all seg-
mentations, which is of course not smaller than any segmentation,
i.e. ∆E(xi,xk)≥ ∆E(xi,x j)+∆E(x j,xk). From the positivity of the
metric follows that the triangle distance difference holds.

Even though the authors don’t believe that a space with not or-
dered shortest paths will model human color vision well, theoreti-
cally, such a space could exist in a non-Riemannian setting. That
means for the most general case of a path-connected metric space
in which all distances are purely based on experiments, we can-
not prove that the grayscale or the saturation maps are intrinsically
ordered.

4.4 Intrinsic Order of Hue
There is an important difference between the saturation or luminance
maps and the hue maps: the latter is periodic. A hue map that covers
every hue necessarily has the same start and endpoint γ(0) = γ(1).
As a result, it can not satisfy global intrinsic order.

Theorem 4. A hue map does not satisfy global intrinsic order.

Proof. Any inner point γ(t),0 < t < 1 violates the triangle dis-
tance difference w.r.t. to the endpoints because the periodicity im-
plies 0 = ∆E(γ(0),γ(1)) but the identity of indiscernibles implies
∆E(γ(0),γ(t)),∆E(γ(t),γ(1))> 0.

Theorem 5. In a Euclidean color space, a hue map satisfies global
intrinsic order if it does not span more than half the circle of hues.

Proof. In a Euclidean color space, a hue map forms a circle. Let
m denote its center. Since two points can not lie further apart than
half the circle, they enclose an angle ∠(xi,m,xk) < π . As can be
seen in Fig. 4(b), the angles formed with a point between xi and xk
are smaller because they add up to it ∠(xi,m,x j)+∠(x j,m,xk) =
∠(xi,m,xk). Then the assertion follows from the law of cosines
on an isosceles triangle c = asin( γ

2 ) and the fact that the sine is
monotonically increasing in [0, π

2 ].

Since local intrinsic order corresponds only to adjacent points,
we can assume without loss of generality that they do not lie further
apart than half the circle. Therefore Theorem 4 implies the following
Corollary.

Corollary 1. In a Euclidean color space, a hue map satisfies local
intrinsic order.

The hue map suffices local order in any color space known to
the authors, but for the case of a path-connected metric space or
even a path metric space in which all distances are purely based
on experiments, we cannot prove that the hue map or its parts are
intrinsically ordered.



Table 1: Summary of the hypotheses, the references where they were stated positively or as negations, and their derived validity w.r.t. to the
different types of order within this paper. Green indicates true in path-connected metric spaces, cyan indicates true in path metric spaces, blue
indicates true in Euclidean spaces, and red indicates false. For consistency and improved coherence, we formulated all hypotheses positively.

Hypothesis Stated positively Stated negatively Legend-based Intrinsic
Local Global Local Global

luminance map is ordered [5,11,18–20,27,29] Thm 2 Thm 2 Thm 3 Thm 3
saturation map is ordered [11, 29] Thm 2 Thm 2 Thm 3 Thm 3
hue map is ordered [5, 11, 28] [5,11,12,18–20,28,31] Thm 2 Thm 2 Thm 1 Thm 4
monotonicity in luminance is necessary [18, 19] Sec 4.5 Sec 4.5 Sec 4.5 Sec 4.5
monotonicity in saturation is necessary [12, 18, 19, 32] Sec 4.5 Sec 4.5 Sec 4.5 Sec 4.5
monotonicity in hue is necessary Sec 4.5 Sec 4.5 Sec 4.5 Sec 4.5
monotonicity in luminance is sufficient [4, 16, 32] [15, 18, 19] Thm 1 Thm 1 Thm 6 Thm 6
monotonicity in saturation is sufficient Thm 1 Thm 1 Thm 6 Thm 6
monotonicity in hue is sufficient [15, 18, 19] Thm 1 Thm 1 Thm 6 Thm 6
monotonicity in luminance, RGB, and
their order is sufficient

[18, 19] [15] Thm 1 Thm 1 Thm 7 Thm 7

monotonicity in luminance, RGB, their
order, hue, and saturation is sufficient

[15] Thm 1 Thm 1 Thm 8 Thm 8

4.5 Necessity of Monotonicity
Monotonicity in a specific attribute is not necessary to guarantee
order. In particular, strict monotonicity in luminance is not necessary
because a saturation map which has constant luminance suffices
legend-based order (Theorem 2) and intrinsic order for path metric
spaces (Theorem 3). Vice versa, strict monotonicity in luminance
is not necessary because the grayscale, which has constant zero
saturation, is a counter example. Finally, either map serves as a
counter example for monotonicity in hue to be necessary.

4.6 Monotonicity and Intrinsic Order
We designed three counter example color maps to show that mono-
tonicity in hue, saturation, or luminance is not sufficient to guarantee
intrinsic order in such a way that they violate the triangle distance
difference in the most common color spaces. Please note though
that mathematically, it is possible for a path-connected metric space
to exist in which the counter examples do not hold.

Theorem 6. Monotonicity in one attribute: hue, saturation, lumi-
nance, is not sufficient to guarantee local or global intrinsic order.

Proof. We will prove all three assertions by providing a counter
example for each. The green colormap in Fig. 1 (left) is monotonic
in hue, smoothly transitioning from yellow through green to cyan
but because its luminance increases linearly in the first half and
decreases in the second half, it does not suffice local intrinsic order
at the non-smooth center. Analogously, the orange colormap in
Fig. 1 (center) is monotonic in saturation, smoothly transitioning
from completely desaturated to fully saturated. However, because
its hue goes from red to yellow in the first half and back to red in the
second half, it does not suffice local intrinsic order at the non-smooth
center. Finally, the purple colormap in Fig. 1 (right) is monotonic
in luminance but because its saturation becomes zero in the middle
increasing to both sides, it does not suffice local intrinsic order at
the non-smooth center.

For each counter example, Fig. 1(bottom) shows negative triangle
distance difference w.r.t. CIELAB76, CIELAB00, and CIEUCS02
(triangle distance difference visualized using [9]).

In all three cases the assertion for local intrinsic order implies the
one for global intrinsic order, too.

For the more specific hypotheses regarding ”optimal color scales”
by Pitzer and Levkovitz [15, 18, 19], we can reuse earlier results.

Theorem 7. Monotonicity in luminance, RGB, and their order is
not sufficient for intrinsic order.

Proof. We designed the colormap from Fig. 1(right) not only to be
monotonic in luminance but also in RGB and their mutual. Therefore
the assertion follows from Theorem 6.

Theorem 8. Monotonicity in luminance, RGB, and their order, and
hue is sufficient for intrinsic order.

Proof. A colormap that is monotonic in hue is a partial hue map as
treated in Subsection 4.4. The restriction w.r.t. RGB ensures that
it covers only 1

6 -th of the full circle. For a Euclidean setting, the
assertion follows from Theorem 5.

5 CONCLUSION

In this paper, we have collected hypotheses from colormapping liter-
ature about what is necessary or sufficient to imply perceptual order.
Table 1 summarizes a schematic overview with the corresponding
references and how we were able to prove or disprove their validity.

Our overall findings can be summarized as follows:

• Monotonicity in any attribute is sufficient to imply legend-
based order in any path-connected metric space.

• There is no single attribute in which monotonicity is necessary
to imply order.

• Luminance and saturation are intrinsically ordered in a path
metric space.

• A hue map is generally not intrinsically ordered, but it is in the
special case of a Euclidean space if it does not exceed one half
of the full hue circle.

It is far easier to test for monotonicity than for order. In future
work, a more complete treatment of order will require perceptual
user evaluation and understanding the interplay of data and task with
perceptual order. Yet we hope that by using these current results,
visualization practitioners will be able to design colormaps to meet
their data and task specific needs more effectively.
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