Title: Survey and Analysis of Multiresolution Methods for Turbulence Data

Author(s): Pulido, Jesus J.
Livescu, Daniel
Woodring, Jonathan Lee
Ahrens, James Paul
Hamann, Bernd

Intended for: Web

Issued: 2015-10-05
Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Enabling Remote Visualization and Scale Analysis of Large Turbulence Databases

Jesus Pulido1,2, Daniel Livescu2, Randal Burns3, Curtis Canada2, James Ahrens2, and Bernd Hamann1

1Institute for Data Analysis and Visualization, University of California, Davis, CA, 95616-8562, U.S.A.
2Los Alamos National Laboratory, Los Alamos, NM 87544, USA
3Johns Hopkins University

Previously submitted to IEEE SciVis '15
Introduction

General

- Remote analysis and visualization of raw large turbulence data is challenging
- The Johns Hopkins Turbulence database (JHTDB) simplifies access to over 230 Terabytes of direct numerical simulation data through commodity hardware
- A demand exists for a visualization framework that adds high-speed remote visualization for large datasets

Contributions

- Remote visualization support and additional compute capabilities were added to the database cluster
- Wavelet compression was introduced at the data-level to reduce access cost, bandwidth, and improve visualization latency
- Wavelet compression used to reduce memory footprint of datasets for visualization

JHTDB: http://turbulence.pha.jhu.edu/
Remote visualization is achieved through Paraview and Paraview Web integration

JHTDB: http://turbulence.pha.jhu.edu/
JHTDB API (Matlab, C++, HTML, etc)
Tests and Results

Remote Visualization

- Web (HTML 5) interface
Tests and Results

Efficiency (Performance)

- Scenario: A single 512^3 grid size subset of a 1024^3 dataset is accessed and visualized by a single user.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Original (512)</th>
<th>Scale 1 (256)</th>
<th>Scale 2 (128)</th>
<th>Scale 3 (64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelet decompose</td>
<td>0 s</td>
<td>17.8 s</td>
<td>20.6 s</td>
<td>20.8 s</td>
</tr>
<tr>
<td>Wavelet reconstruct</td>
<td>0 s</td>
<td>23.3 s</td>
<td>23.2 s</td>
<td>23.3 s</td>
</tr>
<tr>
<td>Visualize volume</td>
<td>25.7 s</td>
<td>3.01 s</td>
<td>0.22 s</td>
<td>0.02 s</td>
</tr>
<tr>
<td>Visualize isosurfaces</td>
<td>171.0 s</td>
<td>12.1 s</td>
<td>0.91 s</td>
<td>0.15 s</td>
</tr>
<tr>
<td>Total time</td>
<td>196.7 s</td>
<td>56.21 s</td>
<td>44.93 s</td>
<td>44.27 s</td>
</tr>
<tr>
<td>RAM used</td>
<td>4526 MB</td>
<td>865 MB</td>
<td>308 MB</td>
<td>178 MB</td>
</tr>
<tr>
<td>Est. Concurrent users</td>
<td><14</td>
<td><75</td>
<td><212</td>
<td><368</td>
</tr>
</tbody>
</table>

Intel Xeon E5440 @ 2.83 Ghz / 64GB RAM
Tests and Results

Efficiency (Performance)

- Scenario: A single 512^3 grid size subset of a 1024^3 dataset is accessed and visualized by a single user.

- ... and these are only Serial wavelet results, parallel benchmarks will be better!!

<table>
<thead>
<tr>
<th>Operation</th>
<th>Intel Xeon E5440 @ 2.83 Gtz</th>
<th>Estimate Concurrent Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic B-spline wavelets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelet decompression</td>
<td>196.2 s</td>
<td><14</td>
</tr>
<tr>
<td>Wavelet reconstruction</td>
<td>56.8 s</td>
<td><75</td>
</tr>
<tr>
<td>Visualize volume</td>
<td>44.93 s</td>
<td><212</td>
</tr>
<tr>
<td>Visualize isosurfaces</td>
<td>44.27 s</td>
<td><368</td>
</tr>
<tr>
<td>Total time</td>
<td>44.27 s</td>
<td></td>
</tr>
<tr>
<td>RAM used</td>
<td>4526 MB</td>
<td>865 MB</td>
</tr>
<tr>
<td></td>
<td>308 MB</td>
<td>178 MB</td>
</tr>
</tbody>
</table>

Intel Xeon E5440 @ 2.83 Gtz / 64GB RAM
Tests and Results

Quality

- Density component of a dataset is decomposed into 6 scales using cubic B-spline wavelets
Tests and Results

Scale-based wavelet analysis

- Reconstruction of individual scales

Original
Tests and Results

Scale-based wavelet analysis

- Reconstruction of individual scales

Scale 2
Tests and Results

Scale-based wavelet analysis

- Reconstruction of individual scales

Scale 3
Tests and Results

Scale-based wavelet analysis

- Reconstruction of individual scales

Scale 4
Tests and Results

Scale-based wavelet analysis

- Reconstruction of individual scales

Scale 6
Questions? Thank you!